全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2014 

A Wireless Flexible Sensorized Insole for Gait Analysis

DOI: 10.3390/s140101073

Keywords: sensorized insole, plantar pressure distribution, gait analysis, real-time gait monitoring, wearable sensor

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper introduces the design and development of a novel pressure-sensitive foot insole for real-time monitoring of plantar pressure distribution during walking. The device consists of a flexible insole with 64 pressure-sensitive elements and an integrated electronic board for high-frequency data acquisition, pre-filtering, and wireless transmission to a remote data computing/storing unit. The pressure-sensitive technology is based on an optoelectronic technology developed at Scuola Superiore Sant’Anna. The insole is a low-cost and low-power battery-powered device. The design and development of the device is presented along with its experimental characterization and validation with healthy subjects performing a task of walking at different speeds, and benchmarked against an instrumented force platform.

References

[1]  Hessert, M.J.; Vyas, M.; Leach, J.; Hu, K.; Lipsitz, L.A.; Novak, V. Foot pressure distribution during walking in young and old adults. BMC Geriatr. 2005, 5, doi:10.1186/1471–2318–5-8.
[2]  Sparrow, W.A.; Tirosh, O. Gait termination: A review of experimental methods and the effects of ageing and gait pathologies. Gait Posture 2005, 22, 362–371.
[3]  Halliday, S.E.; Winter, D.A.; Frank, J.S.; Patla, A.E.; Prince, F. The initiation of gait in young, elderly, and Parkinson's disease subjects. Methodology 1998, 8, 8–14.
[4]  Smith, K.E.; Commean, P.K.; Mueller, M.J.; Robertson, D.D.; Pilgram, T.; Johnson, J. Assessment of the diabetic foot using spiral computed tomography imaging and plantar pressure measurements: A technical report. J. Rehabil. Res. Devel. 2000, 37, 31–40.
[5]  Mueller, M.J. Application of plantar pressure assessment in footwear and insert design. J. Orthoped. Sports Phys. Ther. 1999, 29, 747–755.
[6]  Queen, R.M.; Haynes, B.B.; Hardaker, W.M.; Garrett, W.E. Forefoot loading during 3 athletic tasks. Am. J. Sports Med. 2007, 35, 630–636.
[7]  Urry, S. Plantar pressure-measurement sensors. Meas. Sci. Technol. 1999, 10, 13–32.
[8]  Orlin, M.N.; McPoil, T.G. Plantar pressure assessment. Phys. Ther. 2000, 80, 399–409.
[9]  Winter, D.A. Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological, 2nd ed. ed.; University of Waterloo Press: Waterloo, ON, Canada, 1991; p. p. 143.
[10]  Adkin, A.; Frank, J.; Carpenter, M.; Peysar, G. Postural control is scaled to level of postural threat. Gait Posture 2000, 12, 87–93.
[11]  Wearing, S.C.; Urry, S.R.; Smeathers, J.E. The effect of visual targeting on ground reaction force and temporospatial parameters of gait. Clin. Biomech. 2000, 15, 583–591.
[12]  Cobb, J.; Claremont, D.J. Transducers for foot pressure measurement: Survey of recent developments. Med. Biol. Eng. Computing 1995, 33, 525–532.
[13]  Razak, A.H.A.; Zayegh, A.; Begg, R.K.; Wahab, Y. Foot plantar pressure measurement system: A review. Sensors 2012, 12, 9884–9912.
[14]  Tekscan? F-Scan? System Web Page. Available online: http://www.tekscan.com (accessed on 15 October 2013).
[15]  Paromed? paroTec? System Web Page. Available online: http://www.paromed.biz (accessed on 15 October 2013).
[16]  Novel? Pedar? System Web Page. Available online: http://www.novel.de/novelcontent/pedar (accessed on 15 October 2013).
[17]  Brimacombe, J.M.; Wilson, D.R.; Hodgson, A.J.; Ho, K.C.; Anglin, C. Effect of calibration method on Tekscan sensor accuracy. J. Biomech. Eng. 2009, 131, 034503:1–034503:4.
[18]  Woodburn, J.; Helliwell, P.S. Observations on the F-Scan in-shoe pressure measuring system. Clin. Biomech. 1996, 11, 301–304.
[19]  Luo, Z.P.; Berglund, L.J.; An, K.N. Validation of F-scan pressure sensor system: A technical note. J. Rehabil. Res. Devel. 1998, 35, 186.
[20]  Hurkmans, H.L.P.; Bussmann, J.B.J.; Selles, R.W.; Horemans, H.L.D.; Benda, E.; Stam, H.J.; Verhaar, J.A.N. Validity of the pedar mobile system for vertical force measurement during a seven-hour period. J. Biomech. 2006, 39, 110–118.
[21]  Saito, M.; Nakajima, K.; Takano, C.; Ohta, Y.; Sugimoto, C.; Ezoe, R.; Sasaki, K.; Hosaka, H.; Ifukube, T.; Ino, S.; et al. An in-shoe device to measure plantar pressure during daily human activity. Med. Eng. Phys. 2011, 33, 638–645.
[22]  Chang, C.C.; Lee, M.Y.; Wang, S.H. Customized Foot Pressure Redistribution Insole Design Using Image-Based Rapid Pressure Measuring System. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Montreal, Qu, Canada, 7–10 October 2007; pp. 2945–2950.
[23]  Chen, M.; Huang, B.; Xu, Y. Intelligent Shoes for Abnormal Gait Detection. Proceedings of the IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 2019–2024.
[24]  Mancinelli, C.; Patel, S.; Deming, L.C.; Nimec, D.; Chu, J.J.; Beckwith, J.; Greenwald, R.; Bonato, P. A Novel Sensorized Shoe System to Classify Gait Severity in Children with Cerebral Palsy. , 5010–5013.
[25]  Healy, A.; Burgess-Walker, P.; Naemi, R.; Chockalingam, N. Repeatability of WalkinSense? in shoe pressure measurement system: A preliminary study. Foot 2012, 22, 35–39.
[26]  O'Connor, C.M.; Thorpe, S.K.; O'Malley, M.J.; Vaughan, C.L. Automatic detection of gait events using kinematic data. Gait Posture 2007, 25, 469–474.
[27]  Kong, K.; Tomizuka, M. A gait monitoring system based on air pressure sensors embedded in a shoe. IEEE/ASME Trans. Mechatron. 2009, 14, 358–370.
[28]  Brach, J.S.; Studenski, S.A.; Perera, S.; VanSwearingen, J.M.; Newman, A.B. Gait variability and the risk of incident mobility disability in community-dwelling older adults. J. Gerontol. Ser. A 2007, 62, 983–988.
[29]  Bao, L.; Intille, S.S. Activity recognition from user-annotated acceleration data. Pervasive Comput. 2004, 3001, 1–17.
[30]  Walsh, C.J.; Paluska, D.; Pasch, K.; Grand, W.; Valiente, A.; Herr, H. Development of a Lightweight Underactuated Exoskeleton for Load-Carrying Augmentation. Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 15–19 May 2006; pp. 3485–3491.
[31]  De Rossi, S.M.M.; Lenzi, T.; Vitiello, N.; Donati, M.; Persichetti, A.; Giovacchini, F.; Vecchi, F.; Carrozza, M.C. Development of an In-Shoe Pressure Sensitive Device for Gait Analysis. Proceedings of the IEEE International Conference of the Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September2011; pp. 5637–5640.
[32]  Donati, M.; Vitiello, N.; De Rossi, S.M.M.; Lenzi, T.; Crea, S.; Persichetti, A.; Giovacchini, F.; Koopman, B.; Podobnik, J.; Munih, M.; et al. A flexible sensor technology for the distributed measurement of interaction pressure. Sensors 2013, 13, 1021–1045.
[33]  Crea, S.; De Rossi, S.M.M.; Donati, M.; Reber?ek, P.; Novak, D.; Vitiello, N.; Lenzi, T.; Podobnik, J.; Munih, M.; Carrozza, M.C. Development of Gait Segmentation Methods for Wearable Foot Pressure Sensors. Proceedings of IEEE International Conference of Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 5018–5021.
[34]  De Rossi, S.M.M.; Crea, S.; Donati, M.; Reber?ek, P.; Novak, D.; Vitiello, N.; Lenzi, T.; Podobnik, J.; Munih, M.; Carrozza, M.C. Gait Segmentation Using Bipedal Foot Pressure Patterns. Proceedings of the IEEE International Conference on Biomedical Robotics and Biomechatronics, Rome, Italy, 24–27 June 2012; pp. 361–366.
[35]  Novak, D.; Reber?ek, P.; De Rossi, S.M.M.; Donati, M.; Podobnik, J.; Beravs, T.; Lenzi, T.; Vitiello, N.; Carrozza, M.C.; Munih, M. Automated detection of gait initiation and termination using wearable sensors. Med. Eng. Phys. 2013, 35, 1713–1720.
[36]  Crea, S.; Vitiello, N.; De Rossi, S.M.M.; Lenzi, T.; Donati, M.; Cipriani, C.; Carrozza, M.C. Development of an Experimental Set-up for Providing Lower-Limb Amputees with an Augmenting Feedback. In Converging Clinical & Engineering Research on Neurorehabilitation; Springer: Berlin/Heidelberg, Germany, 2012; Volume 1, pp. 1019–1023.
[37]  Stephen, H.S.; Winter, D.A. Biomechanical model of the human foot: Kinematics and kinetics during the stance phase of walking. J. Biomech. 1993, 26, 1091–1104.
[38]  Carrozza, M.C.; Persichetti, A.; Laschi, C.; Vecchi, F.; Lazzarini, R.; Vacalebri, P.; Dario, P. A wearable biomechatronic interface for controlling robots with voluntary foot movements. Trans. Mechantronics 2007, 12, 1–11.
[39]  De Rossi, S.M.M.; Lenzi, T.; Vitiello, N.; Persichetti, A.; Giovacchini, F.; Carrozza, M.C. Struttura di tappeto sensorizzato (Sensorized mat structure). Italian Patent Application PI2011A000091, 23 August 2011.
[40]  De Rossi, S.M.M.; Lenzi, T.; Vitiello, N.; Persichetti, A.; Giovacchini, F.; Carrozza, M.C. Structure of Sensorized mat. PCT Patent Application n. PCT/IB2012/054068, Application date: 9 August 2012.
[41]  Lenzi, T.; Vitiello, N.; De Rossi, S.M.M.; Persichetti, A.; Giovacchini, F.; Roccella, S.; Vecchi, F.; Carrozza, M.C. Measuring human-robot interaction on wearable robot: A distributed approach. Mechatronics 2011, 21, 1123–1131.
[42]  Vitiello, N.; Lenzi, T.; Roccella, S.; De Rossi, S.M.M.; Cattin, E.; Giovacchini, F.; Vecchi, F.; Carrozza, M.C. NEUROExos: A powered elbow exoskeleton for physical rehabilitation. Trans. Robot. 2013, 29, 220–235.
[43]  Lenzi, T.; De Rossi, S.M.M.; Vitiello, N.; Carrozza, M.C.C. Intention-based EMG control for powered exoskeletons. Trans. Biomed. Eng. 2012, 59, 2180–2190.
[44]  Ronsse, R.; Vitiello, N.; Lenzi, T.; van den Kieboom, J.; Carrozza, M.C.; Ijspeert, A.J. Human-robot synchrony: Flexible assistance using adaptive oscillators. Trans. Biomed. Eng. 2011, 58, 1001–1012.
[45]  De Rossi, S.M.M.; Vitiello, N.; Lenzi, T.; Ronsse, R.; Koopman, B.; Persichetti, A.; Vecchi, F.; Ijspeert, A.J.; van der Kooij, H.; Carrozza, M.C. Sensing pressure distribution on a lower-limb exoskeleton physical human-machine interface. Sensors 2011, 11, 207–227.
[46]  Veneman, J.F.; Kruidhof, R.; Hekman, E.E.; Ekkelenkamp, R.; van Asseldonk, E.H.; van der Kooij, H. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans. Neural Sys. Rehabil. Eng. 2007, 15, 379–386.
[47]  OSA Opto Light catalogue Web Page. Available online: http://www.osa-opto.com/series-330.html (accessed on 15 October 2013).
[48]  AVAGO Technologies Web Page. Available online: http://www.avagotech.com/docs/AV02-0512EN (accessed on 15 October 2013).
[49]  Perry, J.; Davids, J.R. Gait analysis: Normal and pathological function. J. Pediatr. Orthop. 1992, 12, 815.
[50]  Chiu, M.C.; Wang, M.J. The effect of gait speed and gender on perceived exertion, muscle activity, joint motion of lower extremity, ground reaction force and heart rate during normal walking. Gait Posture 2007, 25, 385–392.
[51]  Hurkmans, H.L.P.; Bussmann, J.B.J.; Benda, E.; Verhaar, J.A.N.; Stam, H.J. Accuracy and repeatability of the Pedar Mobile system in long-term vertical force measurements. Gait Posture 2006, 23, 118–125.
[52]  Hsiao, H.; Guan, J.; Weatherly, M. Accuracy and precision of two in-shoe pressure measurement systems. Ergonomics 2002, 45, 537–555.
[53]  Keller, T.S.; Weisberger, A.M.; Ray, J.L.; Hasan, S.S.; Shiavi, R.G.; Spengler, D.M. Relationship between vertical ground reaction force and speed during walking, slow jogging, and running. Clin. Biomech. 1996, 11, 253–259.
[54]  Sue, B.; Cunningham, J.L.; West, S. A comparison of vertical force and temporal parameters produced by an in-shoe pressure measuring system and a force platform. Clin. Biomech. 2001, 16, 353–357.
[55]  ?ber, T.; Karsznia, A.; ?berg, K. Basic gait parameters: Reference data for normal subjects 10–79 years of age. J. Rehabil. Res. Devel. 1993, 30, 210.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133