This paper studies the problem of multiple vehicle cooperative localization with spatial registration in the formulation of the probability hypothesis density (PHD) filter. Assuming vehicles are equipped with proprioceptive and exteroceptive sensors (with biases) to cooperatively localize positions, a simultaneous solution for joint spatial registration and state estimation is proposed. For this, we rely on the sequential Monte Carlo implementation of the PHD filtering. Compared to other methods, the concept of multiple vehicle cooperative localization with spatial registration is first proposed under Random Finite Set Theory. In addition, the proposed solution also addresses the challenges for multiple vehicle cooperative localization, e.g., the communication bandwidth issue and data association uncertainty. The simulation result demonstrates its reliability and feasibility in large-scale environments.
References
[1]
Laneurit, J.; Chapuis, R.; Chausse, F. Accurate vehicle positioning on a numerical map. Int. J. Control Autom. Syst. 2005, 3, 15–31.
[2]
Kao, W.W. Integration of GPS and Dead-Reckoning Navigation Systems. Proceedings of the Vehicle Navigation and Information Systems Conference, Dearborn, MI, USA, 20–23 October 1991; Volume 2, pp. 635–643.
[3]
Rezaei, S.; Sengupta, R. Kalman filter-based integration of DGPS and vehicle sensors for localization. IEEE Trans. Control Syst. Technol. 2007, 15, 1080–1088.
[4]
Zhang, F.; Chen, G.; Stahle, H.; Buckl, C.; Knoll, A. Visual Odometry Based on Random Finite Set Statistics in Urban Environment. Proceedings of the 2012 IEEE Intelligent Vehicles Symposium (IV), Alcala de Henares, Spain, 3–7 June 2012; pp. 69–74.
[5]
Sohn, H.J.; Kim, B.K. A Robust Localization Algorithm for Mobile Robots with Laser Range Finders. Proceedings of the 2005 IEEE International Conference on Robotics and Automation (ICRA '05), Barcelona, Spain, 18–22 April 2005; pp. 3545–3550.
[6]
Liu, M.; Huang, S.; Dissanayake, G. Feature Based SLAM Using Laser Sensor Data with Maximized Information Usage. Proceedings of the 2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011; pp. 1811–1816.
[7]
John-Olof, N.; Peter, H. Recursive Bayesian Initialization of Localization Based on Ranging and Dead Reckoning. Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, 3–8 November 2013; pp. 1399–1404.
[8]
Remy, G.; Sebastien, L.; Laurent, H. A Visibility Information for Multi-Robots Localization. Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, 3–8 November 2013; pp. 1426–1431.
[9]
Khaled, Y.; Tsukada, M.; Santa, J.; Choi, J.; Ernst, T. A usage oriented analysis of vehiclular networks: from technologies to applications. J. Commun. 2009, 4, 357–368.
[10]
Roumeliotis, S.; Rekleitis, I. Analysis of Multirobot Localization Uncertainty Propagation. Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, (IROS 2003), Las Vegas, NV, USA, 27 October–1 November 2003; Volume 2, pp. 1763–1770.
Karam, N.; Chausse, F.; Aufrere, R.; Chapuis, R. Cooperative Multi-Vehicle Localization. Proceedings of the 2006 IEEE Intelligent Vehicles Symposium, Tokyo, Japan, 13–15 June 2006; pp. 564–570.
[13]
Howard, A.; Mataric, M.; Sukhatme, G. Putting the ‘I’ in ‘Team’: An Ego-Centric Approach to Cooperative Localization. Proceedings of the 2003 IEEE International Conference on Robotics and Automation (ICRA '03), Taipei, Taiwan, 14–19 September 2003; Volume 1, pp. 868–874.
[14]
Fox, D.; Burgard, W.; Thrun, S. Markov localization for mobile robots in dynamics environments. J. Artif. Intell. Res. 1999, 11, 391–427.
[15]
Howard, A.; Matark, M.; Sukhatme, G. Localization for Mobile Robot Teams Using Maximum Likelihood Estimation. Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems, EPFL, Switzerland, 1–4 October 2002; Volume 1, pp. 434–439.
[16]
Nerurkar, E.; Roumeliotis, S.; Martinelli, A. Distributed Maximum a Posteriori Estimation for Multi-Robot Cooperative Localization. Proceedings of the 2009 IEEE International Conference on Robotics and Automation (ICRA '09), Kobe, Japan, 12–17 May 2009; pp. 1402–1409.
[17]
Trawny, N.; Roumeliotis, S.; Giannakis, G. Cooperative Multi-Robot Localization under Communication Constraints. Proceedings of the 2009 IEEE International Conference on Robotics and Automation (ICRA '09), Kobe, Japan, 12–17 May 2009; pp. 4394–4400.
[18]
Zhang, F.; Staehle, H.; Chen, G.; Buckl, C.; Knoll, A. Multiple Vehicle Cooperative Localization Under Random Finite Set Framework. Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '13), Tokyo, Japan, 3–8 November 2013; pp. 1405–1411.
[19]
Nerurkar, E.D.; Zhou, K.X.; Roumeliotis, S.I. A Hybrid Estimation Framework for Cooperative Localization under Communication Constraints. Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '11), San Francisco, CA, USA, 25–30 September 2011; pp. 502–509.
[20]
Nerurkar, E.; Roumeliotis, S.I. A Communication-Bandwidth-Aware Hybrid Estimation Framework for Multi-Robot Cooperative Localization. Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '13), Tokyo, Japan, 3–8 November 2013; pp. 1418–1425.
[21]
Franchi, A.; Oriolo, G.; Stegagno, P. Mutual localization in multi-robot systems using anonymous relative measurements. Int. J. Robot. Res. 2013, 32, 1302–1322.
[22]
Franchi, A.; Oriolo, G.; Stegagno, P. Mutual Localization in a Multi-Robot System with Anonymous Relative Position Measures. Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '09), St. Louis, MO, USA, 10–15 October 2009; pp. 3974–3980.
[23]
Luo, J.; Hubaux, J.P. A Survey of Inter-Vehicle Communication. Technical Report; School of Computer and Communication Sciences: EPFL, Switzerland, 2004.
[24]
Lian, F.; Han, C.; Liu, W.; Chen, H. Joint spatial registration and multi-target tracking using an extended probability hypothesis density filter. Radar Sonar Navig. IET 2011, 5, 441–448.
[25]
Karam, N.; Chausse, F.; Aufrere, R.; Chapuis, R. Localization of a Group of Communicating Vehicles by State Exchange. Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006; pp. 519–524.
[26]
Li, H.; Nashashibi, F. Cooperative Multi-Vehicle Localization Using Split Covariance Intersection Filter. Proceedings of the 2012 IEEE Intelligent Vehicles Symposium (IV), Alcala de Henares, Spain, 3–7 June 2012; pp. 211–216.
[27]
Julier, S.; Uhlmann, J. A Non-Divergent Estimation Algorithm in the Presence of Unknown Correlations. Proceedings of the 1997 American Control Conference, Albuquerque, NM, USA, 4–6 June 1997; Volume 4, pp. 2369–2373.
[28]
Arambel, P.; Rago, C.; Mehra, R. Covariance Intersection Algorithm for Distributed Spacecraft State Estimation. Proceedings of the 2001 American Control Conference, Arlington, VA, USA, 25–27 June 2001; Volume 6, pp. 4398–4403.
[29]
Julier, S.; Uhlmann, J. Using Multiple SLAM Algorithms. Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '03), Las Vegas, NV, USA, 27 October–1 November 2003; Volume 1, pp. 200–205.
[30]
Goodman, I.; Mahler, R.; Nguyen, H. Mathematics of Data Fusion; Kluwer Academic: Norwell, MA, USA, 1997.
[31]
Vo, B.N. Random Finite Sets in Stochastic Filtering. Technical Report; EEE Department University: Melbourne, Australia, 2009.
[32]
Mullane, J.; Vo, B.N.; Adams, M.; Vo, B.T. A random-finite-set approach to bayesian SLAM. IEEE Trans. Robot. 2011, 27, 268–282.
[33]
Kalyan, B.; Wijesoma, W.S.; Lee, K.W. FISST-SLAM: Finite set statistical approach to simultaneous localization and mapping. Int. J. Robot. Res. 2010, 29, 1251–1262.
[34]
Granstrom, K.; Lundquist, C.; Orguner, U. A Gaussian Mixture PHD Filter for Extended Target Tracking. Proceedings of the 2010 13th Conference on Information Fusion (FUSION '10), EICC, Edinburgh, UK, 26–29 July 2010; pp. 1–8.
[35]
Stegagno, P.; Cognetti, M.; Rosa, L.; Peliti, P.; Oriolo, G. Relative Localization and Identification in a Heterogeneous Multi-Robot System. Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA '13), Karlsruhe, Germany, 6–10 May 2013; pp. 1857–1864.
[36]
Dames, P.; Kumar, V. Cooperative Multi-Target Localization with Noisy Sensors. Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA' 13), Karlsruhe, Germany, 6–10 May 2013; pp. 1877–1883.
[37]
Isaac, A.; Willett, P.; Bar-Shalom, Y. MCMC methods for tracking two closely spaced targets using monopulse radar channel signals. Radar Sonar Navig. IET 2007, 1, 221–229.
[38]
Clark, D.; Bell, J. Multi-target state estimation and track continuity for the particle PHD filter. IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 1441–1453.