全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2014 

Efficient Hardware Implementation of the Lightweight Block Encryption Algorithm LEA

DOI: 10.3390/s140100975

Keywords: LEA, lightweight block cipher, hardware implementation, FPGA, ASIC

Full-Text   Cite this paper   Add to My Lib

Abstract:

Recently, due to the advent of resource-constrained trends, such as smartphones and smart devices, the computing environment is changing. Because our daily life is deeply intertwined with ubiquitous networks, the importance of security is growing. A lightweight encryption algorithm is essential for secure communication between these kinds of resource-constrained devices, and many researchers have been investigating this field. Recently, a lightweight block cipher called LEA was proposed. LEA was originally targeted for efficient implementation on microprocessors, as it is fast when implemented in software and furthermore, it has a small memory footprint. To reflect on recent technology, all required calculations utilize 32-bit wide operations. In addition, the algorithm is comprised of not complex S-Box-like structures but simple Addition, Rotation, and XOR operations. To the best of our knowledge, this paper is the first report on a comprehensive hardware implementation of LEA. We present various hardware structures and their implementation results according to key sizes. Even though LEA was originally targeted at software efficiency, it also shows high efficiency when implemented as hardware.

References

[1]  Lim, C.; Korkishko, T. mCrypton—A lightweight block cipher for security of low-cost RFID tags and sensors. Lect. Note. Comput. Sci. 2006, 3786, 243–258.
[2]  Hong, D.; Sung, J.; Hong, S.; Lim, J.; Lee, S.; Koo, B.S.; Lee, C.; Chang, D.; Lee, J.; Jeong, K. HIGHT: A new block cipher suitable for low-resource device. Lect. Note. Comput. Sci. 2006, 4249, 46–59.
[3]  Bogdanov, A.; Knudsen, L.; Leander, G.; Paar, C.; Poschmann, A.; Robshaw, M.; Seurin, Y.; Vikkelsoe, C. PRESENT: An ultra-lightweight block cipher. Lect. Note. Comput. Sci. 2007, 4727, 450–466.
[4]  Cannière, C.; Dunkelman, O.; Kne?evi?, M. KATAN and KTANTAN—A family of small and efficient hardware-oriented block ciphers. Lect. Note. Comput. Sci. 2009, 5747, 272–288.
[5]  Engels, D.; Saarinen, M.J.O.; Schweitzer, P.; Smith, E.M. The Hummingbird-2 lightweight authenticated encryption algorithm. Lect. Note. Comput. Sci. 2012, 7055, 19–31.
[6]  Guo, J.; Peyrin, T.; Poschmann, A.; Robshaw, M. The LED block cipher. Lect. Note. Comput. Sci. 2011, 6917, 326–341.
[7]  Moradi, A.; Poschmann, A.; Ling, S.; Paar, C.; Wang, H. Pushing the limits: A very compact and a threshold implementation of AES. Lect. Note. Comput. Sci. 2011, 6632, 69–88.
[8]  Poschmann, A.Y. Lightweight Cryptography: Cryptographic Engineering for a Pervasive World. In Ph.D. Thesis; Ruhr-University Bochum: Bochum, Germany, 2009.
[9]  Hong, D.; Lee, J.K.; Kim, D.C.; Kwon, D.; Ryu, G.H.; Lee, D. LEA: A 128-Bit Block Cipher for Fast Encryption on Common Processors. Proceedings of the 14th International Workshop on Information Security Applications, Jeju, Korea, 19–21 August 2013.
[10]  Daemen, J.; Rijmen, V. AES Proposal: Rijndael. Proceedings of the First Advanced Encryption Standard (AES) Conference, Ventura, CA, USA, 20–22 August 1998.
[11]  Leander, G.; Paar, C.; Poschmann, A.; Schramm, K. New lightweight DES variants. Lect. Note. Comput. Sci. 2007, 4593, 196–210.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133