We present a design of a nanometrology measuring setup which is a part of the national standard instrumentation for nanometrology operated by the Czech Metrology Institute (CMI) in Brno, Czech Republic. The system employs a full six-axis interferometric position measurement of the sample holder consisting of six independent interferometers. Here we report on description of alignment issues and accurate adjustment of orthogonality of the measuring axes. Consequently, suppression of cosine errors and reduction of sensitivity to Abbe offset is achieved through full control in all six degrees of freedom. Due to the geometric configuration including a wide basis of the two units measuring in y-direction and the three measuring in z-direction the angle resolution of the whole setup is minimize to tens of nanoradians. Moreover, the servo-control of all six degrees of freedom allows to keep guidance errors below 100 nrad. This small range system is based on a commercial nanopositioning stage driven by piezoelectric transducers with the range (200 × 200 × 10) μm. Thermally compensated miniature interferometric units with fiber-optic light delivery and integrated homodyne detection system were developed especially for this system and serve as sensors for othogonality alignment.
References
[1]
Leach, R.K.; Boyd, R.; Burke, T.; Danzebrink, H.U.; Dirscherl, K.; Dziomba, T.; Yacoot, A. The European nanometrology landscape. Nanotechnology 2011, 22, 062001.
[2]
Neuschaefer-Rube, U.; Neugebauer, M.; Dziomba, T.; Danzebrink, H.U.; Koenders, L.; Bosse, H. Recent developments of standards for 3D micro- and nanometrology. Tech. Mess. 2011, 78, 118–126.
[3]
Korpelainen, V.; Lassila, A. Calibration of a commercial AFM: Traceability for a coordinate system. Meas. Sci. Technol. 2007, 18, 395–403.
Korpelainen, V.; Seppa, J.; Lassila, A. Design and characterization of MIKES metrological atomic force microscope. Precis. Eng. J. Int. Soc. Precis. Eng. Nanotechnol. 2010, 34, 735–744.
[6]
Haycocks, J.; Jackson, K. Traceable calibration of transfer standards for scanning probe microscopy. Precis. Eng. J. Int. Soc. Precis. Eng. Nanotechnol. 2005, 29, 168–175.
[7]
Koning, R.; Flugge, J.; Bosse, H. A method for the in situ determination of Abbe errors and their correction. Meas. Sci. Technol. 2007, 18, 476–481.
[8]
Jansen, A.; Rosielle, N.; Schellekens, P. A Fully Elastically Guided 3-D CMM with a Measuring Volume or 1 cm(3). Proceedings of the Fourteenth Annual Meeting of the American Society for Precision Engineering, Monterey, CA, USA, 31 October 1999; pp. 452–455.
[9]
Poyet, B.; Ducourtieux, S. Advances in the development of the LNE metrological atomic force microscope. Opt. Micro- Nanometrol. 2010, 7718, 77180U:1–77180U:8.
[10]
Werner, C.; Rosielle, P.C.J.N.; Steinbuch, M. Design of a long stroke translation stage for AFM. Int. J. Mach. Tools Manuf. 2010, 50, 183–190.
[11]
Seggelen, J.K.; Rosielle, P.C.J.N.; Schellekens, P.H.J.; Spaan, H.A.M.; Bergmans, R.H.; Kotte, G.J.W.L. An elastically guided machine axis with nanometer repeatability. CIPR Ann. 2005, 54, 487–490.
[12]
Haitjema, H.; Rosielle, P.C.J.N.; Kotte, G.; Steijaert, H. Design and calibration of a parallel-moving displacement generator for nano-metrology. Meas. Sci. Technol. 1998, 9, 1098–1104.
[13]
Jager, G.; Manske, E.; Hausotte, T. New applications of the nanomeasuring machine (NPM-Machine) by novel optical and tactile probes with subnanometer repeatability. Tech. Mess. 2006, 73, 457–464.
[14]
Eves, B.J. Design of a large measurement-volume metrological atomic force microscope (AFM). Meas. Sci. Technol. 2009, 20, 084003.
[15]
Dai, G.L.; Butefisch, S.; Pohlenz, F.; Danzebrink, H.U.; Koenders, L. Scanning probe metrology: From the metrological SFM to the micro/nano CMM. Tech. Mess. 2009, 76, 43–53.
Vermeulen, M.M.P.A.; Rosielle, P.C.J.N.; Schellekens, P.H.J. Design of a high-precision 3D-coordinate measuring machine. CIRP Ann. 1998, 47, 447–450.
[18]
Dai, G.L.; Wolff, H.; Pohlenz, F.; Danzebrink, H.U. A metrological large range atomic force microscope with improved performance. Rev. Sci. Instrum. 2009, 80, 043702.
[19]
Petru, F.; Vesela, Z. Single-frequency hene laser with a central maximum of output power. Opt. Commun. 1993, 96, 339–347.
[20]
Lazar, J.; Klapetek, P.; Cip, O.; Cizek, M.; Sery, M. Local probe microscopy with interferometric monitoring of the stage nanopositioning. Meas. Sci. Technol. 2009, 20, 084007.
[21]
Lazar, J.; Hrabina, J.; Jedlicka, P.; Cip, O. Absolute frequency shifts of iodine cells for laser stabilization. Metrologia 2009, 46, 450–456.
[22]
Hrabina, J.; Petru, F.; Jedlicka, P.; Cip, O.; Lazar, J. Purity of iodine cells and optical frequency shift of iodine-stabilized He-Ne lasers. Optoelectron. Adv. Mater.Rapid Commun. 2007, 1, 202–206.
[23]
Hrabina, J.; Jedlicka, P.; Lazar, J. Methods for measurement and verification of purity of iodine cells for laser frequency stabilization. Meas. Sci. Rev. 2008, 8, 118–121.
[24]
Lazar, J.; Hrabina, J.; Sery, M.; Klapetek, P.; Cip, O. Multiaxis interferometric displacement measurement for local probe microscopy. Cent. Eur. J. Phys. 2012, 10, 225–231.
[25]
Hrabina, J.; Lazar, J.; Klapetek, P.; Cip, O. Multidimensional interferometric tool for the local probe microscopy nanometrology. Meas. Sci. Technol. 2011, 22, 094030.
[26]
Hrabina, J.; Lazar, J.; Klapetek, P.; Cip, O. AFM Nanometrology Interferometric System with the Compensation of Angle Errors. Proceedings of the SPIE Optical Measurement Systems for Industrial Inspection VII, Munich, Germany, 27 May 2011; Volume 8082, p. p. 80823U.
[27]
Cip, O.; Petru, F. A scale-linearization method for precise laser interferometry. Meas. Sci. Technol. 2011, 11, 133–141.
[28]
Büchner, H.-J.; J?ger, G. A novel plane mirror interferometer without using corner cube reflectors. Meas. Sci. Technol. 2006, 17, 746–752.
[29]
Petru, F.; Cip, O. Problems regarding linearity of data of a laser interferometer with a single-frequency laser. Precis. Eng. J. Am. Soc. Precis. Eng. 1999, 23, 39–50.