Spraying techniques have been undergoing continuous evolution in recent decades. This paper presents part of the research work carried out in Spain in the field of sensors for characterizing vineyard canopies and monitoring spray drift in order to improve vineyard spraying and make it more sustainable. Some methods and geostatistical procedures for mapping vineyard parameters are proposed, and the development of a variable rate sprayer is described. All these technologies are interesting in terms of adjusting the amount of pesticides applied to the target canopy.
References
[1]
Rosell, J.R.; Sanz, R. A review of methods and applications of the geometric characterization of tree crops in agricultural activities. Comput. Electron. Agric. 2012, 81, 124–141.
[2]
Rosell-Polo, J.R.; Sanz, R.; Llorens, J.; Arnó, J.; Escolà, A.; Ribes-Dasi, M.; Masip, J.; Camp, F.; Gràcia, F.; Solanelles, F.; et al. A tractor-mounted scanning LIDAR for the non-destructive measurement of vegetative volume and surface area of tree-row plantations: A comparison with conventional destructive measurements. Biosyst. Eng. 2009, 102, 128–134.
[3]
Rosell, J.R.; Llorens, J.; Sanz, R.; Arnó, J.; Ribes-Dasi, M.; Masip, J.; Escolà, A.; Camp, F.; Solanelles, F.; Gràcia, F.; et al. Obtaining the three-dimensional structure of tree orchards from remote 2D terrestrial LIDAR scanning. Agric. Forest Meteorol. 2009, 149, 1505–1515.
[4]
Escolà, A.; Planas, S.; Rosell, J.R.; Pomar, J.; Camp, F.; Solanelles, F.; Gràcia, F.; Llorens, J.; Gil, E. Performance of an ultrasonic ranging sensor in apple tree canopies. Sensors 2011, 11, 2459–2477.
[5]
Arnó, J.; Escolà, A.; Vallès, J.M.; Llorens, J.; Sanz, R.; Masip, J.; Palacín, J.; Rosell-Polo, J.R. Leaf area index estimation in vineyards using a ground-based LIDAR scanner. Precision Agric. 2013, 14, 290–306.
[6]
Sanz, R.; Rosell, J.R.; Llorens, J.; Gil, E.; Planas, S. Relationship between tree row LIDAR-volume and leaf area density for fruit orchards and vineyards obtained with a LIDAR 3D Dynamic Measurement System. Agric. Forest Meteorol. 2013, 171, 153–162.
[7]
Gil, E.; Llorens, J.; Llop, J.; Fàbregas, X.; Gallart, M. Use of a terrestrial lidar sensor for drift detection in vineyard spraying. Sensors 2013, 13, 516–534.
[8]
Llorens, J.; Gil, E.; Llop, J.; Queraltó, M. Georeferenced LiDAR 3D vine plantation map generation. Sensors 2011, 11, 6237–6256.
[9]
Llorens, J.; Gil, E.; Llop, J.; Escolà, A. Ultrasonic and lidar sensors for electronic canopy characterization in vineyards: advances to improve pesticide application methods. Sensors 2011, 11, 2177–2194.
[10]
López-Lozano, R.; Baret, F.; García de Cortázar-Atauri, I.; Bertrand, N.; Casterad, M.A. Optimal geometric configuration and algorithms for LAI indirect estimates under row canopies: The case of vineyards. Agric. Forest Meteorol. 2009, 149, 1307–1316.
[11]
Walklate, P.J.; Cross, J.V.; Richardson, G.M.; Murray, R.A.; Baker, D.E. Comparison of different spray volume deposition models using LIDAR measurements of apple orchards. Biosys. Eng. 2002, 82, 253–267.
[12]
Tumbo, S.D.; Salyani, M.; Whitney, J.D.; Wheaton, T.A.; Miller, W.M. Investigation of laser and ultrasonic ranging sensors for measurements of citrus canopy volume. Appl. Eng. Agric. 2002, 18, 367–372.
[13]
Arnó, J.; Vallès, J.M.; Llorens, J.; Blanco, R.; Palacín, J.; Sanz, R.; Masip, J.; Ribes-Dasi, M.; Rosell, J.R. Ground Laser Scanner Data Analysis for LAI Prediction in Orchards and Vineyards. Proceedings of International Conference on Agricultural Engineering 2006, Bonn, Germany, 3–6 September 2006.
[14]
Manktelow, D.W.L.; Praat, J.P. The Tree-Row-Volume Spraying System and Its Potential Use in New Zealand. Proceedings of the NZ Plant Protection Conference, Lincoln, New Zealand, 18–21 August 1997; pp. 119–124.
[15]
Llorens, J.; Gil, E.; Llop, J.; Escolà, A. Variable rate dosing in precision viticulture: Use of electronic devices to improve application efficiency. Crop Prot. 2010, 29, 239–248.
[16]
Rinaldi, M.; Llorens, J.; Gil, E. Electronic Characterization of the Phenological Stages of Grapevine Using A LIDAR Sensor. Proceedings of the 9th European Conference on Precision Agriculture, Lleida, Spain, 8–11 July 2013.
[17]
LidarScan v.1 Software; Universitat de Lleida: Lleida, Spain, 2007.
[18]
Frascati, F. Create Packages for R under Windows XP. Available online: http://cran.r-project.org/doc/contrib/Frascati-Rpackages.pdf (accessed on 20 November 2013).
[19]
Arnó, J.; Martínez-Casasnovas, J.A.; Ribes-Dasi, M.; Rosell, J.R. Review. Precision viticulture. Research topics, challenges and opportunities in site-specific vineyard management. Spanish J. Agric. Res. 2009, 7, 779–790.
[20]
Arnó, J.; Del Moral, I.; Escolà, A.; Company, J.; Masip, J.; Sanz, R.; Rosell, J.R.; Martínez-Casasnovas, J.A. Mapping the Leaf Area Index in Vineyard Using A Ground-Based Lidar Scanner. Proceedings of the 11th International Conference on Precision Agriculture, Indianapolis, IN, USA, 15–18 July 2012.
[21]
Precision Agriculture Laboratory. Available online: http://www.sydney.edu.au/agriculture/pal/ (accessed on 19 June 2013).
[22]
Fridgen, J.J.; Kitchen, N.R.; Sudduth, K.A.; Drummond, S.T.; Wiebold, W.J.; Fraisse, C.W. Management zone analyst (MZA): Software for subfield management zone delineation. Agronomy J. 2004, 96, 100–108.
[23]
Balsari, P.; Doruchowski, G.; Marucco, P.; Tamagnone, M.; van de Zande, J.C.; Wenneker, M. A system for adjusting the spray application to the target characteristics. Agr. Eng. Int. CIGR Ejournal 2008, X, 1–11.
[24]
Gil, E.; Escolà, A. Variable Rate Application of Plant Protection Products in Vineyard Using Ultrasonic Sensors. Proceedings of the 9th Workshop on Sustainable Plant Protection Techniques in Fruit Growing, Alnarp, Sweden, 11–14 September 2007; pp. 61–62.
[25]
Shimborsky, E. Digital Tree Mapping and Its Applications. Proceedings of the 4th European Conference on Precision Agriculture, Berlin, Germany, 15–19 June 2003; pp. 645–650.
[26]
Ballagh, L.M.; Raup, B.H.; Duerr, R.E.; Khalsa, S.J.S.; Helm, C.; Fowler, D.; Gupte, A. Representing scientific data sets in KML: Methods and challenges. Comput. Geosci. 2011, 37, 57–64.
[27]
Escolà, A. Method for Real-Time Variable Rate Application of Plant Protection Products in Precision Horticulture/Fructiculture. Ph.D. Thesis, Universitat de Lleida, Lleida, Spain, 2010.
[28]
Doruchowski, G.; Balsari, P.; Van de Zande, J.C. Development of A Crop Adapted Spray Application System for Sustainable Plant Protection in Fruit Growing. Proceedings of International Symposium on Application of Precision Agriculture for Fruits and Vegetables, Orlando, FL, USA, 1 April 2009.
[29]
Zaman, Q.U.; Salyani, M. Effects of foliage density and ground speed on ultrasonic measurement of citrus tree volume. Appl. Eng. Agric. 2004, 20, 173–178.
[30]
Balsari, P.; Tamagnone, M. An Ultrasonic Airblast Sprayer. Proceedings of the International Conference on Agricultural Engineering, 24–27 August 1998; pp. 585–586.
[31]
Solanelles, F.; Escolà, A.; Planas, S.; Rosell, J.R.; Camp, F.; Gracia, F. An electronic control system for pesticide application proportional to the canopy width of tree crops. Crop Prot. 2006, 95, 473–481.
Byers, R.E.; Hickey, K.D.; Hill, C.H. Base gallonage per acre. Va. Fruit 1971, 60, 19–23.
[35]
Gil, E. Metodología y Criterios Para la Selección y Evaluación de Equipos de Aplicación de Fitosanitarios Para la Vi?a. Ph.D. Thesis, Universitat de Lleida, Lleida, Spain, 2001. in press.
[36]
Escolà, A.; Camp, F.; Solanelles, F.; Llorens, J.; Planas, S.; Rosell, J.R.; Gràcia, F.; Gil, E. Variable Dose Rate Sprayer Prototype for Tree Crops Based on Sensor Measured Canopy Characteristics. Proceedings of Precision Agriculture 2007, Skiathos, Greece, 3–6 June 2007; pp. 563–571.
[37]
Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 Establishing a Framework for Community Action to Achieve the Sustainable Use of Pesticides. 2009/128/EC; European Parliament: Bruxelles, Belgium, 2009.
[38]
Walklate, P.J. Modelling Canopy Interactions for Drift Mitigation. Proceedings of the International Conference on Pesticide Application for Drift Management, Waikoloa, HI, USA, 27–29 October 2004; pp. 370–377.
[39]
Solanelles, F.; Gregorio, E.; Sanz, R.; Rosell, J.R.; Arnó, J.; Planas, S.; Escolà, A.; Masip, J.; Ribes-Dasi, M.; Gràcia, F.; et al. Spray Drift Measurements in Tree Crops Using a Lidar System, Proceedings of the 10th Workshop on Spray Application Techniques in Fruit Growing, Wageningen, The Netherlands, 30 September–2 October 2009; pp. 40–41.
[40]
Gregorio, E.; Solanelles, F.; Rocadenbosch, F.; Rosell, J.R.; Sanz, R. Airborne Spray Drift Measurement Using Passive Collectors and Lidar Systems. Remote Sensing for Agriculture, Ecosystems, and Hydrology XIII, Prague, Czech Republic, 19 September 2011.
[41]
Gregorio, E.; Rosell-Polo, J.R.; Sanz, R.; Rocadenbosch, F.; Solanelles, F.; Garcerá, C.; Chueca, P.; Arnó, J.; del Moral, I.; Masip, J.; et al. LIDAR as an alternative to passive collectors to measure pesticide spray drift. Atmos. Environ. 2013, doi:10.1016/j.atmosenv.2013.09.028.
[42]
Kuflik, T.; Prodorutti, D.; Frizzi, A.; Gafni, Y.; Simon, S.; Pertot, I. Optimization of copper treatments in organic viticulture by using a web-based decision support system. Comput. Electron. Agric. 2009, 68, 36–43.
[43]
Walklate, P.J.; Cross, J.V. A webpage calculator for dose rate adjustment of orchard spraying products. Aspects Appl. Biol. Int. Adv. Appl. 2010, 99, 359–366.
[44]
Gil, E.; Escolà, A. Design of a decision support method to determine volume rate for vineyard spraying. Appl. Eng. Agric. 2009, 25, 145–151.
[45]
Gil, E.; Llorens, J.; Landers, A.J.; Llop, J.; Giralt, L. Field validation of dosavi?a, a decision support system to determine the optimal volume rate for pesticide application in vineyards. Eur. J. Agronomy 2011, 35, 33–46.
[46]
Ebert, T.A.; Downer, R.A. A different look at experiments on pesticide distribution. Crop Prot. 2006, 25, 299–309.