Spatial variation and temporal changes in ground subsidence over the Nobi Plain, Central Japan, are assessed using GIS techniques and ground level measurements data taken over this area since the 1970s. Notwithstanding the general slowing trend observed in ground subsidence over the plains, we have detected ground rise at some locations, more likely due to the ground expansion because of recovering groundwater levels and the tilting of the Nobi land mass. The problem of non-availability of upper-air meteorological information, especially the 3-dimensional water vapor distribution, during the JERS-1 observational period (1992–1998) was solved by applying the AWC (analog weather charts) method onto the high-precision GPV-MSM (Grid Point Value of Meso-Scale Model) water-vapor data to find the latter’s matching meteorological data. From the selected JERS-1 interferometry pair and the matching GPV-MSM meteorological data, the atmospheric path delay generated by water vapor inhomogeneity was then quantitatively evaluated. A highly uniform spatial distribution of the atmospheric delay, with a maximum deviation of approximately 38 mm in its horizontal distribution was found over the Plain. This confirms the effectiveness of using GPV-MSM data for SAR differential interferometric analysis, and sheds thus some new light on the possibility of improving InSAR analysis results for land subsidence applications.
References
[1]
Ueshita, K. Land Subsidence-1-Topic. J. Groundw. Hydrol. 1978, 29, 183–192. (in Japanese).
[2]
Iida, K. Analysis of Land Subsidence in the Nobi Plain; Bulletin of Aichi Institute of Technology: Toyota, Japan, 1986. Part B; pp. 165–173. (in Japanese).
[3]
Sugiura, T.; Toyama, T.; Yamaguchi, M. Groundwater-flow in the Nobi Plain, Japan; Bulletin of Aichi University of Education, Natural Science: Kariya, Japan, 1998; pp. 9–15. (in Japanese).
[4]
Daito, K.; Ueshita, K. Extremely shortage of water in 1994 which enlarged the area of land subsidence in the Nobi Plain. J. Groundw. Hydrol. 1996, 38, 279–294. (in Japanese).
[5]
Zhou, X.; Chang, N.B.; Li, S. Applications of SAR interferometry in earth and environmental science research. Sensors 2009, 9, 1876–1912.
[6]
Land Subsidence Survey Committee of the Three Prefectures in Tokai Region: Land Suidence of Nobi Plain in 1999. 2000, p. 70. (in Japanese).
[7]
Ito, T.; Fukuyama, K. Analyses of Land Subsidence over the Nobi Plain with the aid of GIS. Geoinformatic 2002, 11, 413–416. (in Japanese).
[8]
Mizuno, T.; Yamane, M.; Nishiyama, S. The high-precision technique of land deformation monitoring using satellite radar data. Soil Mech. Found. Eng. 2006, 54, 25–27. (in Japanese).
[9]
Nagaomo, S.; Fujisuka, T.; Sato, I. The experimental approach of the regional surface deformation using satellite radar data. Chubu Japan Geotech. Symposium 2007, 19, 53–62. (in Japanese).
[10]
Shimada, M. User's Guide to NASDA's Products Ver. 3. JAXA Technical Report NDX-000291, 2002. Available online: http://www.eorc.jaxa.jp/JERS-1/en/user_handbook/User_handbook_sar_ (accessed on 24 April 2013).
[11]
Hsieh, C.S.; Shih, T.Y.; Hu, J.C.; Tung, H.; Huang, M.H.; Angelier, J. Using differential SAR interferometry to map land subsidence: A case study in Pingtung Plain of SW Taiwan. Nat. Hazards 2011, 58, 1311–1332.
[12]
Rüeger, J.M. Refractive Index Formula for Radio Waves. Integration of Techniques and Corrections to Achieve Accurate Engineering. Proceedings of the XXII FIG Intional Congress ACSM/SPRS Annual Conference, Washington, DC, USA, 19–26 April 2002.
[13]
Zebker, H.A.; Goldstein, R.M. Topographic mapping from interferometric synthetic aperture radar observation. J. Geophys. Res. 1986, 91, 4993–4999.
[14]
Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigi, K.; Rabaute, T. The displacement field of the Landers earthquake mapped by radar interferometry. Nature 1993, 364, 138–142.
Wang, C.; Zhang, H.; Liu, Z. Spaceborn Synthetic Aperture Radar Interferometry; Science Press: Beijing, China, 2002; pp. 1–66. (in Chinese).
[17]
Tobita, M. Development of SAR interferometry analysis and its application to crustal deformation study. J. Geod. Soc. Jpn. 2003, 49, 1–23. (in Japanese).
[18]
Deguchi, T.; Tsu, H.; Maruyama, Y.; Kato, M. Application of L band InSAR for measurement of local surface deformation by underground coal mining. J. Remote Sens. Soc. Jpn. 2006, 26, 391–398. (in Japanese).
[19]
Ferretti, A.; Monti-Guarnieri, A.; Prati, C.; Rocca, F.; Massonnet, D. INSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation. ESA Publ. 2007. TM-19.
Hung, W.C.; Hwang, C.; Chen, Y.A.; Chang, C.P.; Yen, J.Y; Hooper, A.; Yang, C.Y. Surface deformation from persistent scatterers SAR interferometry and fusion with leveling data: A case study over the Choushui River Alluvial Fan, Taiwan. Remote Sens. Environ. 2011, 115, 957–967.
[22]
Vilhardo, G.; Ventura, G.; Terranova, C.; Matano, F.; Nardo, S. Ground deformation due to tectonic, hydrothermal, gravity, hydrogeological, and anthropic processes in the Campania Region (Southern Italy) from Permanent Scatterers Synthetic Aperture radar Interferometry. Remote Sens. Environ. 2009, 113, 197–212.
[23]
Stramondo, S.; Saroli, M.; Tolomei, C.; Moro, M.; Doumaz, F.; Pesci, A.; Loddo, F.; Baldi, P.; Boschi, E. Surface movements in Bologna (Po Plain—Italy) detected by multitemporal D-InSAR. Remote Sens. Environ. 2007, 110, 304–316.
[24]
Chatterjee, R.S.; Fruneau, B.; Rudant, J.P.; Roy, P.S.; Frison, P.L.; Lakhera, R.C.; Dadhwal, V.K.; Saha, R. Subsidence in Kolkata (Calutta) City, India, during the 1990s as observed from space by Differntial Synthetic Aperture Radar Interferometry (D-InSAR) technique. Remote Sens. Environ. 2006, 102, 176–185.
[25]
Peltier, A.; Bianchi, M.; Kaminski, E.; Komorowski, J.-C.; Rucci, A.; Staudacher, T. PInSAR as a new tool to monitor pre-eruptive volcano ground deformation: Validation using GPS measurements on Piton de la Fournaise. Geophys. Res. Lett. 2010, 37, doi:10.1029/2010GL043846.
[26]
Fujiwara, S.; Tobita, M.; Murakami, M.; Nakagawa, H.; Rosen, P.A. Baseline determination and correction of atmospheric delay induced by topography of SAR interferometry for precise surface change detection. J. Geod. Soc. Jpn. 1999, 45, 315–325. (in Japanese).
[27]
Shimada, M. Correction of the satellite's state vector and the atmospheric excess path delay in the SAR interferometry-an application to surface deformation detection. J. Geod. Soc. Jpn. 1999, 45, 327–346. (in Japanese).
[28]
Ding, X.L.; Li, Z.W.; Zhu, J.J.; Feng, G.C.; Long, J.P. Atmospheric effects on InSAR measurements and their mitigation. Sensors 2008, 8, 5426–5448.
[29]
Delacourt, C.; Briole, P.; Achache, J. Tropospheric correction of SAR interferograms with strong topography: Application to Etna. Geophys. Res. Lett. 1998, 25, 2849–2852.
[30]
Jehle, M.; Perler, D.; Small, D.; Schubert, A.; Meier, E. Estimation of atmospheric path delays in TerraSAR-X data using models vs. measurements. Sensors 2008, 8, 8479–8491.
[31]
Mio, A.; Obayashi, S.; Kurodai, M. Study for the standardization of InSAR in land management fields. J. Remote Sens. Soc. Jpn. 2004, 24, 313–320. (in Japanese).
[32]
Williams, S.; Bock, Y.; Fang, P. Integrated satellite interferometry: Tropospheric noise, GPS estimates and implictions for Interferometric Synthetic Aperture Radar products. J. Geophys. Res. 1998, 103, 27051–27067.
[33]
Ozawa, T.; Shimizu, S. Atmospheric noise reduction in InSAR analysis using numerical weather model. J. Geod. Soc. Jpn. 2010, 56, 137–147. (in Japanese).
[34]
Zheng, M.X.; Fukuyama, K.; Omura, M. Estimation of atmospheric water vapor effects on satellite InSAR observation. Geoinformatics 2010, 21, 209–219. (in Japanese).
[35]
Matulla, C.; Zhang, X.; Wang, X.L.; Wang, J.; Zorita, E.; Wagner, S.; von Storch, H. Influence of similarity measures on the performance of the analogue method for downscaling daily precipitation. Clim. Dyn. 2008, 30, 133–144.
[36]
Hamill, T.M.; Whitaker, J.S. Probabilistic quantitative precipitation forecasts based on reforecast analogs: Theory and Application. Mon. Weather Rev. 2006, 134, 3209–3229.
[37]
Fukui, E.; Yoshino, M. Climatic Environmentology Outline; University of Tokyo Press: Tokyo, Japan, 1979; pp. 1–19. (in Japanese).
[38]
Wada, H. The New Lecture of Long Term Forecast; Chijinshokan Co., Ltd.: Tokyo, Japan, 1969; pp. 125–129. (in Japanese).
[39]
Radinovic, D. An Analogue Method for westher forecasting using 500/1000 mb relative topography. Mon. Weather Rev. 1975, 103, 639–649.
[40]
Toth, Z. Long-range weather forecasting using an Analog Approach. J. Clim. 1989, 2, 594–607.
[41]
Kitzmiller, D.H. One-hour forecasts of radar-estimated rainfall by an extrapolative-statistical method.; NOAA National Weather Service. TDL Office Note 96-1, 1996; p. p. 14.
[42]
Holle, R. Aerology Analog Forecast Method, 2010. Available online: http://research.aerology.com/aerology-analog-weather-forecasting-method/ (accessed on 6 January 2013).
[43]
Gibergans-Baguena, J.; llasat, M.C. Improvement of the analog forecasting method by using local thermodynamic data. Application to autumn precipitation in Catalonia. Atmos. Res. 2007, 89, 173–193.
[44]
Fukuyama, K. The Application of InSAR and Remote Sensing to Temporal and Spatial Variability of Land Subsidence over the Nobi Plain; Research Report on Land Subsidence in Mie Prefecture, Mie Prefecture Land Subsidence Survey Committee: Tsu, Japan, 2005; pp. 1–18. (in Japanese).
[45]
Shimada, M. Verification processor for SAR calibration and interferometry. Adv. Space Res. 1999, 23, 1477–1486.
[46]
Otuka, A.; Kobayashi, S.; Seko, H. A Wind-induced delay pattern in SAR interferometry and numerical simulation. J. Jpn. Soc. Photogramm. 2002, 41, 85–98.