全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2014 

Gait and Foot Clearance Parameters Obtained Using Shoe-Worn Inertial Sensors in a Large-Population Sample of Older Adults

DOI: 10.3390/s140100443

Keywords: gait, elderly, foot clearance, ambulatory system, sensor fusion, reference data

Full-Text   Cite this paper   Add to My Lib

Abstract:

In order to distinguish dysfunctional gait, clinicians require a measure of reference gait parameters for each population. This study provided normative values for widely used parameters in more than 1,400 able-bodied adults over the age of 65. We also measured the foot clearance parameters ( i. e., height of the foot above ground during swing phase) that are crucial to understand the complex relationship between gait and falls as well as obstacle negotiation strategies. We used a shoe-worn inertial sensor on each foot and previously validated algorithms to extract the gait parameters during 20 m walking trials in a corridor at a self-selected pace. We investigated the difference of the gait parameters between male and female participants by considering the effect of age and height factors. Besides; we examined the inter-relation of the clearance parameters with the gait speed. The sample size and breadth of gait parameters provided in this study offer a unique reference resource for the researchers.

References

[1]  Zeng, H.; Zhao, Y. Sensing movement: Microsensors for body motion measurement. Sensors 2011, 11, 638–660.
[2]  Duc, C.; Salvia, P.; Lubansu, A.; Feipel, V.; Aminian, K. Objective evaluation of cervical spine mobility after surgery during free-living activity. Clin. Biomech. 2013, 28, 364–369.
[3]  Olivares, A.; Ramírez, J.; Górriz, J.M.; Olivares, G.; Damas, M. Detection of (In)activity periods in human body motion using inertial sensors: A comparative study. Sensors 2012, 12, 5791–5814.
[4]  Schepers, H.M.; Roetenberg, D.; Veltink, P.H. Ambulatory human motion tracking by fusion of inertial and magnetic sensing with adaptive actuation. Med. Biol. Eng. Comput. 2010, 48, 27–37.
[5]  Mariani, B.; Hoskovec, C.; Rochat, S.; Büla, C.; Penders, J.; Aminian, K. 3D gait assessment in young and elderly subjects using foot-worn inertial sensors. J. Biomech. 2010, 43, 2999–3006.
[6]  Mariani, B.; Rochat, S.; Büla, C.J.; Aminian, K. Heel and toe clearance estimation for gait analysis using wireless inertial sensors. IEEE Trans. Biomed. Eng. 2012, 59, 3162–3168.
[7]  Bagalà, F.; Becker, C.; Cappello, A.; Chiari, L.; Aminian, K.; Hausdorff, J.M.; Zijlstra, W.; Klenk, J. Evaluation of accelerometer-based fall detection algorithms on real-world falls. PLoS One 2012, doi:10.1371/journal.pone.0037062.
[8]  Ostrosky, K.M.; vanSwearingen, J.M.; Burdett, R.G.; Gee, Z.; Eastlack, M. A comparison of gait characteristics in young and old subjects. Phys. Ther. 1994, 74, 637–646.
[9]  Judge, J.O.; Ounpuu, S.; Davis, R., 3rd. Effects of age on the biomechanics and physiology of gait. Clin. Geriatr. Med. 1996, 12, 659.
[10]  Blake, A.; Morgan, K.; Bendall, M.; Dallosso, H.; Ebrahim, S.; Arie, T.; Fentem, P.; Bassey, E. Falls by elderly people at home: Prevalence and associated factors. Age Ageing 1988, 17, 365–372.
[11]  Barrett, R.S.; Mills, P.M.; Begg, R.K. A systematic review of the effect of ageing and falls history on minimum foot clearance characteristics during level walking. Gait Posture 2010, 32, 429–435.
[12]  Karst, G.M.; Hageman, P.A.; Jones, T.F.; Bunner, S.H. Reliability of foot trajectory measures within and between testing sessions. J. Gerontol. Ser. A: Biol. Sci. Med. Sci. 1999, 54, M343–M347.
[13]  Winter, D.A. Foot trajectory in human gait: A precise and multifactorial motor control task. Phys. Ther. 1992, 72, 45–53.
[14]  Begg, R.; Best, R.; Dell'Oro, L.; Taylor, S. Minimum foot clearance during walking: Strategies for the minimisation of trip-related falls. Gait Posture 2007, 25, 191–198.
[15]  McGrath, D.; Greene, B.R.; Walsh, C.; Caulfield, B. Estimation of minimum ground clearance (MGC) using body-worn inertial sensors. J. Biomech. 2011, 44, 1083–1088.
[16]  Schepers, H.M.; Koopman, H.F.J.M.; Veltink, P.H. Ambulatory assessment of ankle and foot dynamics. IEEE Trans. Biomed. Eng. 2007, 54, 895–902.
[17]  Mariani, B.; Rouhani, H.; Crevoisier, X.; Aminian, K. Quantitative estimation of foot-flat and stance phase of gait using foot-worn inertial sensors. Gait Posture 2012, 37, 229–234.
[18]  Mariani, B.; Jiménez, M.C.; Vingerhoets, F.J.G.; Aminian, K. On-shoe wearable sensors for gait and turning assessment of patients with parkinson's disease. IEEE Trans. Biomed. Eng. 2013, 60, 155–158.
[19]  Favre, J.; Jolles, B.M.; Siegrist, O.; Aminian, K. Quaternion-based fusion of gyroscopes and accelerometers to improve 3D angle measurement. Electron. Lett. 2006, 42, 612–614.
[20]  Samson, M.; Crowe, A.; de Vreede, P.; Dessens, J.; Duursma, S.; Verhaar, H. Differences in gait parameters at a preferred walking speed in healthy subjects due to age, height and body weight. Aging (Milan Italy) 2001, 13, 16–21.
[21]  Hollman, J.H.; McDade, E.M.; Petersen, R.C. Normative spatiotemporal gait parameters in older adults. Gait Posture 2011, 34, 111–118.
[22]  Moosabhoy, M.A.; Gard, S.A. Methodology for determining the sensitivity of swing leg toe clearance and leg length to swing leg joint angles during gait. Gait Posture 2006, 24, 493–501.
[23]  MacLellan, M.J.; Richards, C.L.; Fung, J.; McFadyen, B.J. Use of segmental coordination analysis of nonparetic and paretic limbs during obstacle clearance in community-dwelling persons after stroke. PM&R 2013, 5, 381–391.
[24]  Shinya, M.; Popescu, A.; Marchak, C.; Maraj, B.; Pearson, K. Enhancing memory of stair height by the motor experience of stepping. Exp. Brain Res. 2012, 223, 405–414.
[25]  Nagano, H.; Begg, R.K.; Sparrow, W.A.; Taylor, S. Ageing and limb dominance effects on foot-ground clearance during treadmill and overground walking. Clin. Biomech. 2011, 26, 962–968.
[26]  Verghese, J.; Wang, C.; Lipton, R.B.; Holtzer, R.; Xue, X. Quantitative gait dysfunction and risk of cognitive decline and dementia. J. Neurol. Neurosurg. Psychiatry 2007, 78, 929–935.
[27]  Shinkai, S.; Watanabe, S.; Kumagai, S.; Fujiwara, Y.; Amano, H.; Yoshida, H.; Ishizaki, T.; Yukawa, H.; Suzuki, T.; Shibata, H. Walking speed as a good predictor for the onset of functional dependence in a Japanese rural community population. Age Ageing 2000, 29, 441–446.
[28]  Guralnik, J.M.; Ferrucci, L.; Pieper, C.F.; Leveille, S.G.; Markides, K.S.; Ostir, G.V.; Studenski, S.; Berkman, L.F.; Wallace, R.B. Lower extremity function and subsequent disability consistency across studies, predictive models, and value of gait speed alone compared with the Short Physical Performance Battery. J. Gerontol. Ser. A: Biol. Sci. Med. Sci. 2000, 55, M221–M231.
[29]  Verghese, J.; Holtzer, R.; Lipton, R.B.; Wang, C. Quantitative gait markers and incident fall risk in older adults. J. Gerontol. Ser. A: Biol. Sci. Med. Sci. 2009, 64, 896–901.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133