Since their introduction in 2001, SiNW-based sensor devices have attracted considerable interest as a general platform for ultra-sensitive, electrical detection of biological and chemical species. Most studies focus on detecting, sensing and monitoring analytes in aqueous solution, but the number of studies on sensing gases and vapors using SiNW-based devices is increasing. This review gives an overview of selected research papers related to the application of electrical SiNW-based devices in the gas phase that have been reported over the past 10 years. Special attention is given to surface modification strategies and the sensing principles involved. In addition, future steps and technological challenges in this field are addressed.
References
[1]
Tricoli, A.; Righettoni, M.; Teleki, A. Semiconductor gas sensors: Dry synthesis and application. Angew. Chem. Int. Ed. 2010, 49, 7632–7659.
[2]
Sharma, S.; Madou, M. A new approach to gas sensing with nanotechnology. Phil. Trans. R. Soc. A 2012, 370, 2448–2473.
[3]
Kauffman, D.R.; Star, A. Carbon nanotube gas and vapor sensors. Angew. Chem. Int. Ed. 2008, 47, 6550–6570.
[4]
Francia, G.D.; Alfano, B.; Ferrara, V.L. Conductometric gas nanosensors. J. Sens. 2009, 2009, 1–18.
[5]
De, M.; Ghosh, P.S.; Rotello, V.M. Applications of nanoparticles in biology. Adv. Mater. 2008, 20, 4225–4241.
[6]
Bae, C.; Yoo, H.; Kim, S.; Lee, K.; Kim, J.; Sung, M.M.; Shin, H. Template-directed synthesis of oxide nanotubes: Fabrication, characterization, applications. Chem. Mater. 2008, 20, 756–767.
[7]
Liu, A. Towards development of chemosensors and biosensors with metal-oxide-based nanowires or nanotubes. Biosens. Bioelectron. 2008, 24, 167–177.
[8]
Ramgir, N.S.; Yang, Y.; Zacharias, M. Nanowire-based sensors. Small 2010, 6, 1705–1722.
[9]
Gao, X.P.A.; Zheng, G.F.; Lieber, C.M. Subthreshold regime has the optimal sensitivity for nanowire FET biosensors. Nano Lett. 2010, 10, 547–552.
[10]
Cui, Y.; Zhong, Z.H.; Wang, D.L.; Wang, W.U.; Lieber, C.M. High performance silicon nanowire field effect transistors. Nano Lett. 2003, 3, 149–152.
[11]
Cui, Y.; Duan, X.F.; Hu, J.T.; Lieber, C.M. Doping and electrical transport in silicon nanowires. J. Phys. Chem. B 2000, 104, 5213–5216.
[12]
Mescher, M.; de Smet, L.C.P.M.; Sudholter, E.J.R.; Klootwijk, J.H. Robust fabrication method for silicon nanowire field effect transistors for sensing applications. J. Nanosci. Nanotechnol. 2013, 13, 5649–5653.
Penner, R.M. Chemical sensing with nanowires. Annu. Rev. Anal. Chem. 2012, 5, 461–485.
[15]
Bashouti, M.Y.; Sardashti, K.; Schmitt, S.W.; Pietsch, M.; Ristein, J.; Haick, H.; Christiansen, S.H. Oxide-free hybrid silicon nanowires: From fundamentals to applied nanotechnology. Prog. Surf. Sci. 2013, 88, 39–60.
[16]
Bunimovich, Y.L.; Shin, Y.S.; Yeo, W.; Amori, M.; Kwong, G.; Heath, J.R. Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. J. Am. Chem. Soc. 2006, 128, 16323–16331.
[17]
De Smet, L.C.P.M.; Ullien, D.; Mescher, M.; Sudh?lter, E.J.R. Organic Surface Modification of Silicon Nanowire-Based Sensor Devices. In Nanowires-Implementations and Applications; Hashim, A., Ed.; InTech: Rijeka, Croatia, 2011; pp. 267–288.
[18]
Cui, Y.; Lieber, C.M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 2001, 291, 851–853.
[19]
Cui, Y.; Wei, Q.; Park, H.; Lieber, C.M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.
[20]
Zhang, G.J.; Ning, Y. Silicon nanowire biosensor and its applications in disease diagnostics: A review. Anal. Chim. Acta 2012, 749, 1–15.
Chen, X.; Wong, C.K.Y.; Yuan, C.A.; Zhang, G. Nanowire-based gas sensors. Sens. Actuators B: Chem. 2013, 177, 178–195.
[26]
Konvalina, G.; Haick, H. Sensors for breath testing from nanomaterials to comprehensive disease detection. Acc. Chem. Res. 2013, doi:10.1021/ar400070m.
[27]
Broza, Y.Y.; Haick, H. Nanomaterial-based sensors for detection of disease by volatile organic compounds. Nanomedicine 2013, 8, 785–806.
[28]
Hobbs, R.G.; Petkov, N.; Holmes, J.D. Semiconductor nanowire fabrication by bottom-up and top-down paradigms. Chem. Mater. 2012, 24, 1975–1991.
[29]
Moh, T.S.Y.; Pandraud, G.; de Smet, L.C.P.M.; van Rijn, C.J.M.; Sudh?lter, E.J.R.; Sarro, P.M. Fabrication of Nanowires for Biosensing Applications. In Nanodevices and Nanofabrication—Selected Publications from Symposium of Nanodevices and Nanofabrication in ICMAT2011; Zhang, Q., Milne, W.I., Eds.; Pan Stanford Publishing Pte. Ltd.: Singapore, 2012; pp. 1–40.
Noh, J.; Kim, H.; Kim, B.; Lee, E.; Cho, H.; Lee, W. High-performance vertical hydrogen sensors using Pd-coated rough Si nanowires. J. Mater. Chem. 2011, 21, 15935–15939.
[38]
Gao, C.; Xu, Z.; Deng, S.; Wan, J.; Chen, Y.; Liu, R.; Huq, E.; Qu, X. Silicon nanowires by combined nanoimprint and angle deposition for gas sensing applications. Microelectron. Eng. 2011, 88, 2100–2104.
[39]
Cuscunà, M.; Convertino, A.; Zampetti, E.; Macagnano, A.; Pecora, A.; Fortunato, G.; Felisari, L.; Nicotra, G.; Spinella, C.; Martelli, F. On-chip fabrication of ultrasensitive NO2 sensors based on silicon nanowires. Appl. Phys. Lett. 2012, 101, 103101.
[40]
Yun, J.; Jin, C.Y.; Ahn, J.H.; Jeon, S.; Park, I. A self-heated silicon nanowire array: Selective surface modification with catalytic nanoparticles by nanoscale Joule heating and its gas sensing applications. Nanoscale 2013, 5, 6851–6856.
[41]
Zhou, X.T.; Hu, J.Q.; Li, C.P.; Ma, D.D.D.; Lee, C.S.; Lee, S.T. Silicon nanowires as chemical sensors. Chem. Phys. Lett. 2003, 369, 220–224.
[42]
Talin, A.A.; Hunter, L.L.; Léonard, F.; Rokad, B. Large area, dense silicon nanowire array chemical sensors. Appl. Phys. Lett. 2006, 89, 153102.
[43]
Kamins, T.I.; Sharma, S.; Yasseri, A.A.; Li, Z.; Straznicky, J. Metal-catalysed, bridging nanowires as vapour sensors and concept for their use in a sensor system. Nanotechnology 2006, 17, S291–S297.
[44]
McAlpine, M.C.; Agnew, H.D.; Rohde, R.D.; Blanco, M.; Ahmad, H.; Stuparu, A.D.; Goddard, W.A.; Heath, J.R. Peptide-nanowire hybrid materials for selective sensing of small molecules. J. Am. Chem. Soc. 2008, 130, 9583–9589.
[45]
Li, H.L.; Zhang, J.; Tao, B.R.; Wan, L.J.; Gong, W.L. Investigation of capacitive humidity sensing behavior of silicon nanowires. Phys. E Low Dimens. Syst. Nanostruct. 2009, 41, 600–604.
[46]
Passi, V.; Dubois, E.; Celle, C.; Clavaguera, S.; Simonato, J.P.; Raskin, J.P. Functionalization of silicon nanowires for specific sensing. ECS Trans. 2011, 35, 313–318.
[47]
Hsueh, H.T.; Hsueh, T.J.; Chang, S.J.; Hung, F.Y.; Weng, W.Y.; Hsu, C.L.; Dai, B.T. Si nanowire-based humidity sensors prepared on glass substrate. IEEE Sens. J. 2011, 11, 3036–3040.
[48]
In, H.J.; Field, C.R.; Pehrsson, P.E. Periodically porous top electrodes on vertical nanowire arrays for highly sensitive gas detection. Nanotechnology 2011, 22, 355501.
Demami, F.; Ni, L.; Rogel, R.; Salaun, A.C.; Pichon, L. Silicon nanowires based resistors as gas sensors. Sens. Actuators B: Chem. 2012, 170, 158–162.
[51]
Ni, L.; Jacques, E.; Rogel, R.; Salaun, A.C.; Pichon, L.; Wenga, G. VLS silicon nanowires based resistors for chemical sensor applications. Proced. Eng. 2012, 47, 240–243.
[52]
Taghinejad, H.; Taghinejad, M.; Abdolahad, M.; Saeidi, A.; Mohajerzadeh, S. Fabrication and modeling of high sensitivity humidity sensors based on doped silicon nanowires. Sens. Actuators B: Chem. 2013, 176, 413–419.
[53]
Yang, L.; Lin, H.Y.; Zhang, Z.S.; Cheng, L.; Ye, S.Y.; Shao, M.W. Gas sensing of tellurium-modified silicon nanowires to ammonia and propylamine. Sens. Actuators B: Chem. 2013, 177, 260–264.
Engel, Y.; Elnathan, R.; Pevzner, A.; Davidi, G.; Flaxer, E.; Patolsky, F. Supersensitive detection of explosives by silicon nanowire arrays. Angew. Chem. Int. Ed. 2010, 49, 6830–6835.
[56]
Wang, D.; Sun, H.; Chen, A.; Jang, S.H.; Jen, A.K.; Szep, A. Chemiresistive response of silicon nanowires to trace vapor of nitro explosives. Nanoscale 2012, 4, 2628–2632.
[57]
Kim, Y.L.; Lee, J.M.; Lee, S.H.; Lee, W. Highly Sensitive Si Nanowire-Based Gas Sensors for Detection of a Nerve Agent. Proceedings of the 3rd International Nanoelectronics Conference (INEC), Hongkong, China, 3–8 January 2010; pp. 736–737.
[58]
Passi, V.; Ravaux, F.; Dubois, E.; Clavaguera, S.; Carella, A.; Celle, C.; Simonato, J.P.; Silvestri, L.; Reggiani, S.; Vuillaume, D.; Raskin, J.P. High gain and fast detection of warfare agents using back-gated silicon-nanowired MOSFETs. IEEE Electron. Device Lett. 2011, 32, 976–978.
[59]
Clavaguera, S.; Raoul, N.; Carella, A.; Delalande, M.; Celle, C.; Simonato, J.P. Development of an autonomous detector for sensing of nerve agents based on functionalized silicon nanowire field-effect transistors. Talanta 2011, 85, 2542–2545.
Paska, Y.; Stelzner, T.; Christiansen, S.; Haick, H. Enhanced sensing of nonpolar volatile organic compounds by silicon nanowire field effect transistors. ACS Nano 2011, 5, 5620–5626.
[62]
Paska, Y.; Stelzner, T.; Assad, O.; Tisch, U.; Christiansen, S.; Haick, H. Molecular gating of silicon nanowire field-effect transistors with nonpolar analytes. ACS Nano 2012, 6, 335–345.
[63]
Paska, Y.; Haick, H. Interactive effect of hysteresis and surface chemistry on gated silicon nanowire gas sensors. ACS Appl. Mater. Interfaces 2012, 4, 2604–2617.
[64]
Wang, B.; Haick, H. Effect of functional groups on the sensing properties of silicon nanowires toward volatile compounds. ACS Appl. Mater. Interfaces 2013, 5, 2289–2299.
[65]
Wang, B.; Haick, H. Effect of chain length on the sensing of volatile organic compounds by means of silicon nanowires. ACS Appl. Mater. Interfaces 2013, 5, 5748–5756.
[66]
Ermanok, R.; Assad, O.; Zigelboim, K.; Wang, B.; Haick, H. Discriminative power of chemically sensitive silicon nanowire Field Effect Transistors to volatile organic compounds. ACS Appl. Mater. Interfaces 2013, 5, 11172–11183.
[67]
Okano, K.; Totsuka, T. Absorption of nitrogen dioxide by sunflower plants grown at various levels of nitrate. New Phytol. 1986, 102, 551–562.
[68]
Mintz, D. Guidelines for the Reporting of Daily Air Quality—Air Quality Index (AQI). EPA-454/B-06-001; U.S. Environmental Protection Agency: North Carolina, NC, USA, 2006.
[69]
Gill, M.; Walker, S.; Khan, A.; Green, S.M.; Kim, L.; Gray, S.; Krauss, B. Exhaled nitric oxide levels during acute asthma exacerbation. Acad. Emerg. Med. 2005, 12, 579–586.
[70]
Robinson, J.K.; Bollinger, M.J.; Birks, J.W. Luminol H2O2 chemiluminescence detector for the analysis of nitric oxide in exhaled breath. Anal. Chem. 1999, 71, 5131–5136.
Van der Eerdena, L.J.M.; de Visserb, P.H.B.; van Dijk, C.J. Risk of damage to crops in the direct neighbourhood of ammonia sources. Environ. Pollut. 1998, 102, 49–53.
[73]
Vijayan, A.; Fuke, M.; Hawaldar, R.; Kulkarni, M.; Amalnerkar, D.; Aiyer, R.C. Optical fibre based humidity sensor using Co-polyaniline clad. Sens. Actuators B: Chem. 2008, 129, 106–112.