We report a novel design wherein high-refractive-index zinc oxide (ZnO) intermediary layers are used in anti-symmetrically structured surface plasmon resonance (SPR) devices to enhance signal quality and improve the full width at half maximum (FWHM) of the SPR reflectivity curve. The surface plasmon (SP) modes of the ZnO intermediary layer were excited by irradiating both sides of the Au film, thus inducing a high electric field at the Au/ZnO interface. We demonstrated that an improvement in the ZnO (002) crystal orientation led to a decrease in the FWHM of the SPR reflectivity curves. We optimized the design of ZnO thin films using different parameters and performed analytical comparisons of the ZnO with conventional chromium (Cr) and indium tin oxide (ITO) intermediary layers. The present study is based on application of the Fresnel equation, which provides an explanation and verification for the observed narrow SPR reflectivity curve and optical transmittance spectra exhibited by (ZnO/Au), (Cr/Au), and (ITO/Au) devices. On exposure to ethanol, the anti-symmetrically structured showed a huge electric field at the Au/ZnO interface and a 2-fold decrease in the FWHM value and a 1.3-fold larger shift in angle interrogation and a 4.5-fold high-sensitivity shift in intensity interrogation. The anti-symmetrically structured of ZnO intermediate layers exhibited a wider linearity range and much higher sensitivity. It also exhibited a good linear relationship between the incident angle and ethanol concentration in the tested range. Thus, we demonstrated a novel and simple method for fabricating high-sensitivity, high-resolution SPR biosensors that provide high accuracy and precision over relevant ranges of analyte measurement.
References
[1]
Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. In Springer Tracts in Modern Physics, 1st ed. ed.; Springer-Verlag: Berlin, Germany, 1988; Volume 111, pp. 4–39.
[2]
Otto, A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift. fur Physik 1968, 216, 398–410.
[3]
Kretschmann, E.; Raether, H. Radiative decay of non-radiative surface plasmons excited by light. Z. Naturforsch 1968, 23, 2135–2136.
[4]
Wood, R.W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proc. Phys. Soc. Lond. 1902, doi:10.1088/1478-7814/18/1/325.
[5]
Chen, W.P.; Chen, J.M. Use of surface plasma waves for determination of the thickness and optical constants of thin metallic films. J. Opt. Soc. Am. 1981, 71, 189–191.
[6]
Homola, J.; Yee, S.S.; Gauglitz, G. Surface plasmon resonance sensors: Review. Sens. Actuators B Chem. 1999, 54, 3–15.
[7]
Homola, J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 2008, 108, 462–493.
[8]
Yu, X.; Wang, D.; Yan, Z. Simulation and analysis of surface plasmon resonance biosensor based on phase detection. Sens. Actuators B Phys. 2003, 91, 285–290.
Neff, H.; Zong, W.; Lima, A.M.N.; Borre, M.; Holzhuter, G. Optical properties and instrumental performance of thin gold films near the surface plasmon resonance. Thin Solid Films 2006, 496, 688–697.
[14]
Chiu, N.-F.; Yu, C.; Nien, S.-Y.; Lee, J.-H.; Kuan, C.-H.; Wu, K.-C.; Lee, C.-K.; Lin, C.-W. Enhancement and tunability of active plasmonic by multilayer grating coupled emission. Opt. Express 2007, 15, 11608–11615.
[15]
Alleyne, C.J.; Kirk, A.G.; McPhedran, R.C.; Nicorovici, N.A.P.; Maystre, D. Enhanced sensitivity for SPR biosensors using periodic structures. Opt. Express 2007, 15, 8163–8169.
[16]
Lin, C.-W.; Chen, K.-P.; Hsiao, C.-N.; Lee, S.-S.; Lin, S.; Shi, X.-J.; Lee, C.-K. Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor. Sens. Actuators B Chem. 2006, 113, 169–176.
[17]
Patskovsky, S.; Bah, S.; Meunier, M.; Kabashin, A.V. Characterization of high refractive index semiconductor films by surface plasmon resonance. Appl. Opt. 2006, 45, 6640–6645.
[18]
Franzen, S. Plasmonic phenomena in indium tin oxide and ITO-Au hybrid films. Opt. Lett. 2009, 34, 2867–2869.
[19]
Kima, W.M.; Kim, S.H.; Lee, K.-S.; Lee, T.S.; Kim, I.H. Titanium nitride thin film as an adhesion layer for surface plasmon resonance sensor chips. Appl. Sur. Sci. 2012, 261, 749–752.
[20]
?zgür, ü.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Do?an, S.; Avrutin, V.; Cho, S.J.; Morkoc, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 41–301.
[21]
Djuri?i?, A.B.; Leung, Y.H. Optical properties of ZnO nanostructures. Small 2006, 2, 944–961.
[22]
Ozga, K.; Kawaharamura, T.; Ali Umar, A.; Oyama, M.; Nouneh, K.; Slezak, A.; Fujita, S.; Piasecki, M.; Reshak, A.H.; Kityk, I.V. Second-order optical effects in Au nanoparticle-deposited ZnO nanocrystallite films. Nanotechnology 2008, 19, 185–709.
[23]
Liao, H.; Wen, W.; Wong, G.K.; Yang, G. Optical nonlinearity of nanocrystalline Au/ZnO composite films. Opt. Lett. 2003, 28, 1790–1792.
[24]
Wang, X.; Kong, X.; Yu, Y.; Zhang, H. Synthesis and characterization of water-soluble and bifunctional ZnO-Au nanocomposites. J. Phys. Chem. C. 2007, 111, 3836–3841.
[25]
Mosbacker, H.L.; Strzhemechny, Y.M.; White, B.D.; Smith, P.E.; Look, D.C.; Reynolds, D.C.; Litton, C.W.; Brillson, L.J. Role of near-surface states in ohmic-Schottky conversion of Au contacts to ZnO. Appl. Phys. Lett. 2005, 87, 12102–12103.
Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: New York, NY, USA, 1991.
[30]
Sarid, D. Long-range surface-plasmon waves on very thin metal films. Phys. Rev. Lett. 1981, 47, 1927–1930.
[31]
Slavík, R.; Homola, J.; Vaisocherová, H. Advanced biosensing using simultaneous excitation of short and long range surface plasmons. Meas. Sci. Technol. 2006, 17, 932–938.
[32]
Andrew, P.; Barnes, W.L. Energy transfer across a metal film mediated by surface plamon polaritons. Science 2004, 306, 1002–1005.
Saha, S.; Mehan, N.; Sreenivas, K.; Gupta, V. Temperature dependent optical properties of (002) oriented ZnO thin film using surface plasmon resonance. Appl. Phys. Lett. 2009, 95, 71–106.
[37]
Li, X.H.; Huang, A.P.; Zhu, M.K.; Xu, S.L.; Chen, J.; Wang, H.; Wang, B.; Yan, H. Influence of substrate temperature on the orientation and optical properties of sputtered ZnO films. Mater. Lett. 2003, 57, 4655–4659.
[38]
Kim, H.W.; Kim, N.H. Structural studies of room-temperature RF magnetron sputtered ZnO films under different RF powered conditions. Mater. Sci. Eng. B 2003, 103, 297–302.
[39]
Lin, C.-W.; Chen, K.-P.; Su, M.-C.; Hsiao, T.-C.; Lee, S.-S.; Lin, S.; Shi, X.-j.; Lee, C.-K. Admittance loci design method for multilayer surface plasmon resonance devices. Sens. Actuators B Chem. 2006, 117, 219–229.
[40]
Slavik, R.; Homola, J.; Ctyroky, J. Single-mode optical fiber surface plasmon resonance sensor. Sens. Actuator B Phys. 1999, 54, 74–79.
[41]
Herrero, J.; Guillen, C. Improved ITO thin films for photovoltaic applications with a thin ZnO layer by sputtering. Thin Solid Films 2004.
[42]
Guillen, C.; Herrero, J. Comparison study of ITO thin films deposited by sputtering at room temperature onto polymer and glass substrates. Thin Solid Films 2005.
[43]
Yan, X.; Mont, F.W.; Poxson, D.J.; Schubert, M.F.; Kim, J.K.; Cho, J.; Schubert, E.F. Refractive-index-matched indium-tin-oxide electrodes for liquid crystal displays. Jpn. J. Appl. Phys. 2009, 48, 120–203.
[44]
Vary, T.; Markos, P. Propagation of surface plasmons through planar interface. Proc. SPIE 2009, 7353, 73530K.
[45]
Pitarke, J.M.; Silkin, V.M.; Chulkov, E.V.; Echenique, P.M. Theory of surface plasmons and surface-plasmon polaritons. Rep. Prog. Phys. 2007, 70, 1–87.
[46]
Fuji, Y.; Fujiwara, S.; Narumi, K.; Kimura, K.; Mannami, M. Position-dependent stopping powers of the (100) surfaces of NaCl-type crystals for MeV light ions. Surf. Sci. 1992, 277, 164–172.
[47]
Winter, H.; Wilke, M.; Bergomaz, M. Energy loss of fast protons in grazing scattering from an Al(111)-surface. Nucl. Instrum. Meth. B 1997, 125, 124–127.
[48]
Nelson, S.G.; Johnston, K.S.; Yee, S.S. High sensitivity surface plasmon resonance sensor based on phase detection. Sens. Actuators B Chem. 1996, 35, 187–191.
[49]
Yeh, Y.-L.; Lin, Y.-P. High-precision measurement system based on laser interferometer for determining alcohol concentration of liquid solution. Opt. Commun. 2008, 281, 744–749.