全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2014 

High-Temperature Piezoelectric Sensing

DOI: 10.3390/s140100144

Keywords: high-temperature sensing, high-temperature piezoelectrics, piezoelectric sensors, high-temperature piezoelectric sensors

Full-Text   Cite this paper   Add to My Lib

Abstract:

Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

References

[1]  Hunter, G.W.; Wrbanek, J.D.; Okojie, R.S.; Neudeck, P.G.; Fralick, G.C.; Chen, L.; Xu, J.; Beheim, G.M. Development and Application of High-Temperature Sensors and Electronics for Propulsion Applications. Proceedings of the Defense and Security Symposium, Orlando (Kissimmee), FL, USA, 17 April 2006.
[2]  Zhang, S.; Fei, Y.; Chai, B.H.; Frantz, E.; Snyder, D.W.; Jiang, X.; Shrout, T.R. Characterization of piezoelectric single crystal YCa4O(BO3)3 for high-temperature applications. Appl. Phys. Lett. 2008, 92, doi:10.1063/1.2936276.
[3]  Turner, R.; Fuierer, P.; Newnham, R.; Shrout, T. Materials for high-temperature acoustic and vibration sensors: A review. Appl. Acoust. 1994, 41, 299–324.
[4]  Ka?ys, R.; Volei?is, A.; Volei?ien?, B. High-temperature ultrasonic transducers: Review. Ultragarsas 2008, 63, 7–17.
[5]  Fleming, W.J. Overview of automotive sensors. IEEE Sens. J. 2001, 1, 296–308.
[6]  Johnson, R.W.; Evans, J.L.; Jacobsen, P.; Thompson, J.R.; Christopher, M. The changing automotive environment: High-temperature electronics. IEEE Trans. Electron. Packag. Manuf. 2004, 27, 164–176.
[7]  Young, D.J.; Du, J.; Zorman, C.A.; Ko, W.H. High-temperature single-crystal 3C-SiC capacitive pressure sensor. IEEE Sens. J. 2004, 4, 464–470.
[8]  Li, X.; Liu, Q.; Pang, S.; Xu, K.; Tang, H.; Sun, C. High-temperature piezoresistive pressure sensor based on implantation of oxygen into silicon wafer. Sens. Actuators A 2012, 179, 277–282.
[9]  Pulliam, W.J.; Russler, P.M.; Fielder, R.S. High-Temperature High-Bandwidth Fiber Optic MEMS Pressure-Sensor Technology for Turbine Engine Component Testing. Proceedings of Fiber Optic Sensor Technology and Applications, Boston, MA, USA, 28 October 2001; pp. 229–238.
[10]  Dauderstadt, U.; de Vries, P.; Hiratsuka, R.; Sarro, P. Silicon accelerometer based on thermopiles. Sens. Actuators A 1995, 46, 201–204.
[11]  Seidel, H.; Fritsch, U.; Gottinger, R.; Schalk, J.; Walter, J.; Ambaum, K. A Piezoresistive Silicon Accelerometer with Monolithically Integrated CMOS-Circuitry. Proceedings of the 8th International Conference on Solid-State Sensors and Actuators (Transducers' 95), Stockholm, Sweden, 29 June 1995; pp. 597–600.
[12]  Li, N.; Tan, T.-C. A high-temperature metallic oxide resistive oxygen sensor. Sens. Actuators B 1992, 9, 91–96.
[13]  Zimmermann, L.; Ebersohl, J.P.; Le Hung, F.; Berry, J.; Baillieu, F.; Rey, P.; Diem, B.; Renard, S.; Caillat, P. Airbag application: A microsystem including a silicon capacitive accelerometer, CMOS switched capacitor electronics and true self-test capability. Sens. Actuators A 1995, 46, 190–195.
[14]  Lian, Z.; JinSong, Y.; Hao, L. Conditioning Circuit for Precise SiC Capacitive Pressure Sensors. Proceedings of the IEEE Conference on Industrial Electronics and Applications (ICIEA), Beijing, China, 23 June 2011; pp. 559–563.
[15]  Yazdi, N.; Ayazi, F.; Najafi, K. Micromachined inertial sensors. Proc. IEEE 1998, 86, 1640–1659.
[16]  Kasten, K.; Amelung, J.; Mokwa, W. CMOS-compatible capacitive high-temperature pressure sensors. Sens. Actuators A 2000, 85, 147–152.
[17]  Wang, J.; Dong, B.; Lally, E.; Gong, J.; Han, M.; Wang, A. Multiplexed high-temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers. Opt. Lett. 2010, 35, 619–621.
[18]  Riza, N.A.; Sheikh, M.; Perez, F. Hybrid wireless-wired optical sensor for extreme temperature measurement in next generation energy efficient gas turbines. J. Eng. Gas Turbines Power 2010, 132, doi:10.1115/1.3204509.
[19]  Barrera, D.; Finazzi, V.; Villatoro, J.; Sales, S.; Pruneri, V. Packaged optical sensors based on regenerated fiber bragg gratings for high-temperature applications. IEEE Sens. J. 2012, 12, 107–112.
[20]  Nguyen, L.V.; Hwang, D.; Moon, S.; Moon, D.S.; Chung, Y. High-temperature fiber sensor with high sensitivity based on core diameter mismatch. Opt. Express 2008, 16, 11369–11375.
[21]  Zhang, S.; Yu, F. Piezoelectric materials for high-temperature sensors. J. Am. Ceram. Soc. 2011, 94, 3153–3170.
[22]  Damjanovic, D. Materials for high-temperature piezoelectric transducers. Curr. Opin. Solid State Mater. Sci. 1998, 3, 469–473.
[23]  Schulz, M.; Sauerwald, J.; Richter, D.; Fritze, H. Electromechanical properties and defect chemistry of high-temperature piezoelectric materials. Ionics 2009, 15, 157–161.
[24]  Hornsteiner, J.; Born, E.; Fischerauer, G.; Riha, E. Surface Acoustic Wave Sensors for High-Temperature Applications. Proceedings of the IEEE International Frequency Control Symposium, Pasadena, CA, USA, 29 May 1998; pp. 615–620.
[25]  Fachberger, R.; Bruckner, G.; Knoll, G.; Hauser, R.; Biniasch, J.; Reindl, L. Applicability of LiNbO3, langasite and GaPO4 in high-temperature SAW sensors operating at radio frequencies. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2004, 51, 1427–1431.
[26]  Ohlendorf, G.; Richter, D.; Sauerwald, J.; Fritze, H. High-temperature electrical conductivity and electro-mechanical properties of stoichiometric lithium niobate. Diffus. Fundam. 2008, 8, 1–7.
[27]  Fritze, H. High-temperature piezoelectric materials: Defect chemistry and electro-mechanical properties. J. Electroceram. 2006, 17, 625–630.
[28]  Hornsteiner, J.; Born, E.; Riha, E. Langasite for high-temperature surface acoustic wave applications. Phys. Status Solidi A 1997, 163, R3–R4.
[29]  Fritze, H.; Tuller, H. Langasite for high-temperature bulk acoustic wave applications. Appl. Phys. Lett. 2001, 78, 976–977.
[30]  Fritze, H.; Seh, H.; Tuller, H.; Borchardt, G. Operation limits of langasite high-temperature nanobalances. J. Eur. Ceram. Soc. 2001, 21, 1473–1477.
[31]  Fritze, H. High-temperature bulk acoustic wave sensors. Meas. Sci. Technol. 2011, 22, doi:10.1088/0957-0233/22/1/012002.
[32]  Lin, C.-M.; Yen, T.-T.; Felmetsger, V.V.; Hopcroft, M.A.; Kuypers, J.H.; Pisano, A.P. Thermally compensated aluminum nitride Lamb wave resonators for high-temperature applications. Appl. Phys. Lett. 2010, 97, doi:10.1063/1.3481361.
[33]  Yen, T.-T.; Lin, C.-M.; Zhao, X.; Felmetsger, V.V.; Senesky, D.G.; Hopcroft, M.A.; Pisano, A.P. Characterization of Aluminum Nitride Lamb Wave Resonators Operating at 600 °C for Harsh Environment RF Applications. Proceedings of the International Conference on Micro Electro. Mechanical Systems (MEMS), Wanchai, Hong Kong, 28 January 2010; pp. 731–734.
[34]  Yu, F.; Zhang, S.; Zhao, X.; Yuan, D.; Qin, L.; Wang, Q.-M.; Shrout, T.R. Dielectric and electromechanical properties of rare earth calcium oxyborate piezoelectric crystals at high-temperatures. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011, 58, 868–873.
[35]  Zhang, S.; Zheng, Y.; Kong, H.; Xin, J.; Frantz, E.; Shrout, T.R. Characterization of high-temperature piezoelectric crystals with an ordered langasite structure. J. Appl. Phys 2009, 105, doi:10.1063/1.3142429.
[36]  Zhang, S.; Fei, Y.; Frantz, E.; Snyder, D.; Chai, B.; Shrout, T. High-temperature piezoelectric single crystal ReCa4O(BO3)3 for sensor applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 55, 2703–2708.
[37]  Zhang, S.; Frantz, E.; Xia, R.; Everson, W.; Randi, J.; Snyder, D.W.; Shrout, T.R. Gadolinium calcium oxyborate piezoelectric single crystals for ultrahigh-temperature (>1,000 °C) applications. J. Appl. Phys. 2008, 104, doi:10.1063/1.3000560.
[38]  Jacobs, K.; Hofmann, P.; Klimm, D.; Reichow, J.; Schneider, M. Structural phase transformations in crystalline gallium orthophosphate. J. Solid State Chem. 2000, 149, 180–188.
[39]  Shimamura, K.; Takeda, H.; Kohno, T.; Fukuda, T. Growth and charaterization of lanthanum gallium silicate La3Ga5SiO14 single crystals for piezoelectric applications. J. Cryst. Growth 1996, 163, 388–392.
[40]  Da Cunha, M.P.; Moonlight, T.; Lad, R.; Frankel, D.; Bernhard, G. High-Temperature Sensing Technology for Applications up to 1,000 °C. Proceedings of the IEEE Sensors, Lecce, Italy, 29 October 2008; pp. 752–755.
[41]  Puigcorbé, J.; Vogel, D.; Michel, B.; Vilà, A.; Gràcia, I.; Cané, C.; Morante, J. High-temperature degradation of Pt/Ti electrodes in micro-hotplate gas sensors. J. Micromech. Microeng. 2003, 13, S119–S124.
[42]  Richter, D.; Fritze, H. High-temperature Stable Electrodes for Langasite Based Surface Acoustic Wave Devices. Proceedings of the Sensor+Test Conferences 2011, Nürnberg, Germany, 9 June 2011; pp. 532–537.
[43]  Frankel, D.; Bernhardt, G.; Sturtevant, B.; Moonlight, T.; Pereira da Cunha, M.; Lad, R. Stable Electrodes and Ultrathin Passivation Coatings for High-Temperature Sensors in Harsh Environments. Proceedings of the IEEE Sensors, Lecce, Italy, 29 October 2008; pp. 82–85.
[44]  Richter, D.; Sakharov, S.; Forsén, E.; Mayer, E.; Reindl, L.; Fritze, H. Thin film electrodes for high-temperature surface acoustic wave devices. Procedia Eng. 2011, 25, 168–171.
[45]  Firebaugh, S.L.; Jensen, K.F.; Schmidt, M.A. Investigation of high-temperature degradation of platinum thin films with an in situ resistance measurement apparatus. J. Microelectromech. Syst. 1998, 7, 128–135.
[46]  Vedula, R.; Desu, C.; Tirumala, S.; Bhatt, H.; Desu, S.; Lee, K. New electrode-barrier structures for high density ferroelectric memories. Appl. Phys. A 2001, 72, 13–20.
[47]  Bernhardt, G.; Silvestre, C.; LeCursi, N.; Moulzolf, S.; Frankel, D.; Lad, R. Performance of Zr and Ti adhesion layers for bonding of platinum metallization to sapphire substrates. Sens. Actuators B 2001, 77, 368–374.
[48]  Lisoni, J.; Johnson, J.; Everaert, J.-L.; Goux, L.; Meeren, H.V.; Paraschiv, V.; Willegems, M.; Maes, D.; Haspeslagh, L.; Wouters, D.; et al. Mechanical stability of Ir electrodes used for stacked SrBi2Ta2O9 ferroelectric capacitors. Integr. Ferroelectr. 2006, 81, 37–45.
[49]  Kim, K.-W.; Lee, E.-H.; Kim, J.-S.; Shin, K.-H.; Jung, B.-I. A study on performance improvement of Ir oxide-coated titanium electrode for organic destruction. Electrochim. Acta 2002, 47, 2525–2531.
[50]  Lee, S.; Chu, C.-L.; Tsai, M.-J.; Lee, J. High-temperature oxidation behavior of interconnect coated with LSCF and LSM for solid oxide fuel cell by screen printing. Appl. Surf. Sci. 2010, 256, 1817–1824.
[51]  Francois, B.; Richter, D.; Fritze, H.; Davis, Z.J.; Droit, C.; Guichardaz, B.; Petrini, V.; Martin, G.; Friedt, J.-M.; Ballandras, S. Wireless And Passive Sensors For High-Temperature Measurements. Proceedings of the Sensor Devices 2012: The Third International Conference on Sensor Device Technologies and Applications, Rome, Italy, 19–24 August 2012; pp. 46–51.
[52]  Zhu, X.; Ding, D.; Li, Y.; Lu, Z.; Su, W.; Zhen, L. Development of La0. 6Sr0. 4Co0. 2Fe0. 8O3-δ cathode with an improved stability via La0. 8Sr0. 2MnO3-film impregnation. Int. J. Hydrog. Energy 2013, 38, 5375–5382.
[53]  Boubai, O. Knock detection in automobile engines. IEEE Instrum. Meas. Mag. 2000, 3, 24–28.
[54]  Carlucci, A.; Chiara, F.; Laforgia, D. Analysis of the relation between injection parameter variation and block vibration of an internal combustion diesel engine. J. Sound Vib. 2006, 295, 141–164.
[55]  Szwaja, S.; Bhandary, K.; Naber, J. Comparisons of hydrogen and gasoline combustion knock in a spark ignition engine. Int. J. Hydrog. Energy 2007, 32, 5076–5087.
[56]  Abu-Qudais, M. Exhaust gas temperature for knock detection and control in spark ignition engine. Energy Convers. Manag. 1996, 37, 1383–1392.
[57]  Zhang, S.; Jiang, X.; Lapsley, M.; Moses, P.; Shrout, T.R. Piezoelectric accelerometers for ultrahigh-temperature application. Appl. Phys. Lett. 2010, 96, doi:10.1063/1.3290251.
[58]  Kim, K.; Zhang, S.; Salazar, G.; Jiang, X. Design, fabrication and characterization of high-temperature piezoelectric vibration sensor using YCOB crystals. Sens. Actuators A 2012, 178, 40–48.
[59]  Salazar, G.; Kim, K.; Zhang, S.; Jiang, X. Piezoelectric Accelerometer for High-Temperature (1,300 °C) Sensing. Proceedings of the SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, San Diego, CA, USA, 11 March 2012; Volumm 8347.
[60]  PCB Piezotronics Inc. Depew, New York. Available online: http://www.pcb.com/ (accessed on 4 December 2013).
[61]  Meggitt Sensing Systems; Dorset UK. Available online: https://www.endevco.com/ (accessed on 4 December 2013).
[62]  Bulst, W.-E.; Fischerauer, G.; Reindl, L. State of the art in wireless sensing with surface acoustic waves. IEEE Trans. Industrial Electron. 2001, 48, 265–271.
[63]  Thiele, J.; da Cunha, M.P. High-temperature surface acoustic wave devices: Fabrication and characterisation. IEEE Power Electron. Lett 2003, 39, 818–819.
[64]  Wang, S.-Q.; Harada, J.; Uda, S. A wireless surface acoustic wave temperature sensor using langasite as substrate material for high-temperature applications. Jpn. J. Appl. Phys. 2003, 42, 6124–6127.
[65]  Hamidon, M.N.; Skarda, V.; White, N.M.; Krispel, F.; Krempl, P.; Binhack, M.; Buff, W. High-temperature 434 MHz surface acoustic wave devices based on GaPO4. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2006, 53, 2465–2470.
[66]  Da Cunha, M.P.; Lad, R.; Moonlight, T.; Moulzolf, S.; Canabal, A.; Behanan, R.; Davulis, P.; Frankel, D.; Bernhardt, G.; Pollard, T.; et al. Recent Advances in Harsh Environment Acoustic Wave Sensors for Contemporary Applications. Proceedings of the 2011 IEEE Sensors, Limerick, Ireland, 28–31 October 2011; pp. 614–617.
[67]  Canabal, A.; Davulis, P.; Pollard, T.; da Cunha, M.P. Multi-Sensor Wireless Interrogation of Saw Resonators at High-Temperatures. Proceedings of the 2010 IEEE Ultrasonics Symposium (IUS), San Diego, CA, USA, 11–14 October 2010; pp. 265–268.
[68]  Aubert, T.; Bardong, J.; Legrani, O.; Elmazria, O.; Badreddine Assouar, M.; Bruckner, G.; Talbi, A. In situ high-temperature characterization of AlN-based surface acoustic wave devices. J. Appl. Phys. 2013, 114, doi:10.1063/1.4812565.
[69]  Blitz, J.; Simpson, G. Ultrasonic Methods of Non-Destructive Testing; Springer: London, UK, 1996; Volume Volumm 2.
[70]  Rehman, A.; Jen, C.; Ihara, I. Ultrasonic probes for high-temperature immersion measurements. Meas. Sci. Technol. 2001, 12, 306, doi:10.1088/0957-0233/12/3/309.
[71]  Muto, K.; Atsuta, Y. Applications of brazed-type ultrasonic probes for high and low temperature uses. Nondestruct. Test. Eval. 1992, 7, 263–272.
[72]  Fran?la, D.; Jen, C.K.; Nguyen, K.; Gendron, R. Ultrasonic in-line monitoring of polymer extrusion. Polym. Eng. Sci. 2000, 40, 82–94.
[73]  Alig, I.; Steinhoff, B.; Lellinger, D. Monitoring of polymer melt processing. Meas. Sci. Technol. 2010, 21, doi:10.1088/0957-0233/21/6/062001.
[74]  Sahnoune, A.; Tatibou?t, J.; Gendron, R.; Hamel, A.; Piché, L. Application of ultrasonic sensors in the study of physical foaming agents for foam extrusion. J. Cell. Plast. 2001, 37, 429–454.
[75]  Ueki, Y.; Hirabayashi, M.; Kunugi, T.; Nagai, K.; Saito, J.; Ara, K.; Morley, N. Velocity profile measurement of lead-lithium flows by high-temperature ultrasonic doppler velocimetry. Fusion Sci. Technol. 2011, 60, 506–510.
[76]  Kawashima, K. Nondestructive characterization of texture and plastic strain ratio of metal sheets with electromagnetic acoustic transducers. J. Acoust. Soc. Am. 1990, 87, 681–690.
[77]  Dixon, S.; Edwards, C.; Palmer, S. High accuracy non-contact ultrasonic thickness gauging of aluminium sheet using electromagnetic acoustic transducers. Ultrasonics 2001, 39, 445–453.
[78]  Berthelot, Y.H.; Jarzynski, J. Directional laser generation and detection of ultrasound with arrays of optical fibers. J. Nondestr. Eval. 1990, 9, 271–277.
[79]  Jacobs, L.J.; Whitcomb, R.W. Laser generation and detection of ultrasound in concrete. J. Nondestr. Eval. 1997, 16, 57–65.
[80]  Haller, M.I.; Khuri-Yakub, B.T. A surface micromachined electrostatic ultrasonic air transducer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1996, 43, 1–6.
[81]  McNab, A.; Kirk, K.; Cochran, A. Ultrasonic transducers for high-temperature applications. IEE Proc-Sei. Meas. Technol. 1998, 145, 229–236.
[82]  Kobayashi, M.; Jen, C.-K.; Bussiere, J.F.; Wu, K.-T. High-temperature integrated and flexible ultrasonic transducers for nondestructive testing. NDT&E Int. 2009, 42, 157–161.
[83]  Hou, R.; Hutson, D.; Kirk, K.J.; Fu, Y.Q. AlN thin film transducers for high-temperature non-destructive testing applications. J. Appl. Phys. 2012, 111, doi:10.1063/1.3700345.
[84]  Baba, A.; Searfass, C.T.; Tittmann, B.R. High-temperature ultrasonic transducer up to 1000° C using lithium niobate single crystal. Appl. Phys. Lett. 2010, 97, doi:10.1063/1.3524192.
[85]  Parks, D.A.; Zhang, S.; Tittmann, B.R. High-temperature (>500 °C) ultrasonic transducers: An experimental comparison among three candidate piezoelectric materials. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2013, 60, 1010–1015.
[86]  Marin-Franch, P.; Martin, T.; Tunnicliffe, D.; Das-Gupta, D. PTCa/PEKK piezo-composites for acoustic emission detection. Sens. Actuators A 2002, 99, 236–243.
[87]  Scruby, C.; Wadley, H. An assessment of acoustic emission for nuclear pressure vessel monitoring. Prog. Nucl. Energy 1983, 11, 275–297.
[88]  Bently, P. A review of acoustic emission for pressurised water reactor applications. NDT Int. 1981, 14, 329–335.
[89]  Holbert, K.E.; Sankaranarayanan, S.; McCready, S.S. Response of lead metaniobate acoustic emission sensors to gamma irradiation. IEEE Trans. Nucl. Sci. 2005, 52, 2583–2590.
[90]  Hutton, P. An overview of development and application of acoustic emission methods in the United States. Nucl. Eng. Des. 1989, 113, 59–69.
[91]  Hartman, W. A Case for Acoustic Emission Surveillance of Operating Reactors; Scitech Connect: San Juan Capistrano, CA, USA, 1985.
[92]  Runow, P. The use of acoustic emission methods as aids to the structural integrity assessment of nuclear power plants. Int. J. Press. Vessel. Pip. 1985, 21, 157–207.
[93]  Kirk, K.; Scheit, C.; Schmarje, N. High-temperature acoustic emission tests using lithium niobate piezocomposite transducers. Insight Non Destr. Test. Cond. Monit. 2007, 49, 142–145.
[94]  Johnson, J.A.; Kim, K.; Zhang, S.; Wu, D.; Jiang, X. High-Temperature (>1,000 °C) Acoustic Emission Sensor. Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, San Diego, CA, USA, 10 March 2013.
[95]  Fritze, H.; Tuller, H.; Seh, H.; Borchardt, G. High-temperature nanobalance sensor based on langasite. Sens. Actuators B 2001, 76, 103–107.
[96]  Zheng, P.; Chin, T.-L.; Greve, D.; Oppenheim, I.; Malone, V.; Cao, L. High-temperature langasite SAW oxygen sensor. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011, 58, 1538–1540.
[97]  Takeda, H.; Hagiwara, M.; Noguchi, H.; Hoshina, T.; Takahashi, T.; Kodama, N.; Tsurumi, T. Calcium aluminate silicate Ca2Al2SiO7 single crystal applicable to piezoelectric sensors at high-temperature. Appl. Phys. Lett. 2013, 102, doi:10.1063/1.4811163.
[98]  Claudio, C.; Roland, S.; Max, W. High-Temperature Stability of New Single Crystal Piezoelectric Sensors. Proceedings of the SENSOR—SENSOR+TEST Conferences 2011, Nürnberg, Germany, 9 June 2011; pp. 520–525.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133