全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2014 

Development of a Multi-Channel Piezoelectric Acoustic Sensor Based on an Artificial Basilar Membrane

DOI: 10.3390/s140100117

Keywords: cochlea, piezoelectric, microelectromechanical system (MEMS), artificial basilar membrane (ABM), laser Doppler vibrometer (LDV)

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this research, we have developed a multi-channel piezoelectric acoustic sensor (McPAS) that mimics the function of the natural basilar membrane capable of separating incoming acoustic signals mechanically by their frequency and generating corresponding electrical signals. The McPAS operates without an external energy source and signal processing unit with a vibrating piezoelectric thin film membrane. The shape of the vibrating membrane was chosen to be trapezoidal such that different locations of membrane have different local resonance frequencies. The length of the membrane is 28 mm and the width of the membrane varies from 1 mm to 8 mm. Multiphysics finite element analysis (FEA) was carried out to predict and design the mechanical behaviors and piezoelectric response of the McPAS model. The designed McPAS was fabricated with a MEMS fabrication process based on the simulated results. The fabricated device was tested with a mouth simulator to measure its mechanical and piezoelectrical frequency response with a laser Doppler vibrometer and acoustic signal analyzer. The experimental results show that the as fabricated McPAS can successfully separate incoming acoustic signals within the 2.5 kHz–13.5 kHz range and the maximum electrical signal output upon acoustic signal input of 94 dBSPL was 6.33 mVpp. The performance of the fabricated McPAS coincided well with the designed parameters.

References

[1]  von Békésy, G. Some biophysical experiments from fifty years ago. Annu. Rev. Physiol. 1974, 36, 1–16.
[2]  Robles, L.; Ruggero, M.A. Mechanics of the mammalian cochlea. Physiol. Rev. 2001, 81, 1305–1352.
[3]  Zeng, F.G.; Rebscher, S.; Harrison, W.V.; Sun, X.; Feng, X. Cochlear Implants: System design, integration and evaluation. IEEE Rev. Biomed. Eng. 2008, 1, 115–142.
[4]  Xu, T.; Bachman, M.; Zeng, F.; Li, G. Polymeric micro-cantilever array for auditory front-end processing. Sens. Actuators A Phys. 2004, 114, 176–182.
[5]  Chen, F.; Cohen, H.I.; Bifano, T.G.; Castle, J.; Fortin, J.; Kapusta, C.; Mountain, D.C.; Zosuls, A.; Hubbard, A.E. A hydromechanical biomimetic cochlea: Experiments and models. J. Acoust. Soc. Am. 2006, 119, 394–405.
[6]  White, R.D.; Grosh, K. A. Micromachined Cochlear-Like Acoustic Sensor. .
[7]  White, R.D.; Grosh, K. Microengineered hydromechanical cochler model. Proc. Natl. Acad. Sci. USA 2005, 102, 1296–1301.
[8]  Wittbrodt, M.J.; Steele, C.R.; Puria, S. Developing a physical model of the human cochlea using microfabrication methods. Audiol. Neurotol. 2005, 11, 104–112.
[9]  Wittbrodt, M.J. A. Life-Sized Model of the Human Cochlea: Design, Analysis, Fabrication, and Measurements. Ph.D. Thesis, Boston University, Boston, MA, USA, 2005.
[10]  Shintaku, H.; Nakagawa, T.; Kitagawa, D.; Tanujaya, H.; Kawano, S.; Ito, J. Development of piezoelectric acoustic sensor with frequency selectivity for artificial cochlea. Sens. Actuators A Phys. 2010, 158, 183–192.
[11]  Tarn, J.-Q.; Huang, L.-J. Saint-Venant end effects in multilayered piezoelectric laminates. Int. J. Solids Struct. 2002, 39, 4979–4998.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133