Energy-efficient communication is one of the main concerns of wireless sensor networks nowadays. A commonly employed approach for achieving energy efficiency has been the use of duty-cycled operation of the radio, where the node’s transceiver is turned off and on regularly, listening to the radio channel for possible incoming communication during its on-state. Nonetheless, such a paradigm performs poorly for scenarios of low or bursty traffic because of unnecessary activations of the radio transceiver. As an alternative technology, Wake-up Radio (WuR) systems present a promising energy-efficient network operation, where target devices are only activated in an on-demand fashion by means of a special radio signal and a WuR receiver. In this paper, we analyze a novel wake-up radio approach that integrates both data communication and wake-up functionalities into one platform, providing a reconfigurable radio operation. Through physical experiments, we characterize the delay, current consumption and overall operational range performance of this approach under different transmit power levels. We also present an actual single-hop WuR application scenario, as well as demonstrate the first true multi-hop capabilities of a WuR platform and simulate its performance in a multi-hop scenario. Finally, by thorough qualitative comparisons to the most relevant WuR proposals in the literature, we state that the proposed WuR system stands out as a strong candidate for any application requiring energy-efficient wireless sensor node communications.
References
[1]
Ba, H.; Demirkol, I.; Heinzelman, W. Feasibility and Benefits of Passive RFID Wake-Up Radios for Wireless Sensor Networks. Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM'10), Miami, FL, USA, 6–10 December 2012; pp. 1–5.
[2]
Polastre, J.; Hill, J.; Culler, D. Versatile Low Power Media Access for Wireless Sensor Networks. Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems, Baltimore, MD, USA, 3–5 November 2004; pp. 95–107.
[3]
Buettner, M.; Yee, G.V.; Anderson, E.; Han, R. X-MAC: A Short Preamble MAC Protocol for Duty-Cycled Wireless Sensor Networks. Proceedings of the 4th International Conference on Embedded Networked Sensor Systems, Boulder, CO, USA, 1–3 November 2006; pp. 307–320.
[4]
Gamm, G.U.; Sippel, M.; Kostic, M.; Reindl, L.M. Low Power Wake-up Receiver for Wireless Sensor Nodes. Proceedings of the 6th International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), Brisbane, QLD, Australia, 7–10 December 2010; pp. 121–126.
[5]
Austria Microsystems AS3932/AS3933 LF Detector ICs Datasheet. Available online: http://www.ams.com/eng/acceptpolicy/information/66224/570460/AS3933_Datasheet_EN_v2.pdf (accessed on 1 October 2013).
[6]
Oller, J.; Demirkol, I.; Paradells, J.; Casademont, J. Design, development and performance evaluation of a low-cost, low-power wake-up radio system for wireless sensor networks. ACM Trans. Sens. Netw. 2013, 10, 11.
[7]
Texas Instruments CC1101: Low-Power Sub-1 GHz RF Transceiver Datasheet. Available online: http://www.ti.com/lit/ds/symlink/cc1101.pdf (accessed on 1 October 2013).
[8]
Oller, J.; Demirkol, I.; Paradells, J.; Casademont, J.; Heinzelman, W. Time-Knocking: A Novel Addressing Mechanism for Wake-up Receivers. Proceedings of the 8th IEEE International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Barcelona, Spain, 8–10 October 2012; pp. 268–275.
[9]
Texas Instruments MSP430F2350 Mixed Signal Microcontroller. Available online: http://www.ti.com/lit/ds/symlink/msp430f2350.pdf (accessed on 1 October 2013).
[10]
Wolfram Research Mathematica. Scientific Software. Available online: http://www.wolfram.com/mathematica/ (accessed on 1 October 2013).
[11]
Gamm, G.U.; Reindl, L.M. Range Extension for Wireless Wake-up Receivers. Proceedings of the 9th International Multi-Conference on Systems, Signals and Devices (SSD), Chemnitz, Germany, 20–23 March 2012; pp. 1–4.
[12]
András, V.; Rudolf, H. An Overview of the OMNeT++ Simulation Environment. Proceedings of the 1st International Conference on Simulation Tools and Techniques for Communications, Networks and Systems & Workshops (Simutools'08), Marseille, France, 4–6 March 2008; ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering): Brussels, Belgium, 2008; pp. 1–10.
[13]
MoteIV Corporation T-Mote Sky: Ultra Low Power IEEE 802.15.4 Compliant Wireless Sensor Module. Available online: http://www.eecs.harvard.edu/~konrad/projects/shimmer/references/tmote-sky-datasheet.pdf (accessed on 1 October 2013).
Pletcher, N.M. Ultra-Low Power Wake-up Receivers for Wireless Sensor Networks. Ph.D. Thesis, University of California, Berkeley, CA, USA, 20 May 2008.
[16]
Yomo, H.; Kondo, Y.; Miyamoto, N.; Tang, S.; Iwai, M.; Ito, T. Receiver design for Realizing On-Demand WiFi Wake-up using WLAN Signals. ArXiv e-Prints 2012. arXiv:1209, 6186.
[17]
Ba, H.; Demirkol, I.; Heinzelman, W. Passive wake-up radios: From devices to applications. Ad Hoc Netw. 2013, 11, 2605–2621.
[18]
Alien ALR-9900+ Enterprise Reader; Alien Technology: Morgan Hill, CA, USA, 2010; Volume 2011.
[19]
Pletcher, N.M.; Gambini, S.; Rabaey, J. A 52 uW wake-up receiver with ?72 dBm sensitivity using an uncertain-IF architecture. IEEE J. Solid-State Circuits 2009, 44, 269–280.
[20]
Drago, S.; Leenaerts, D.M.W.; Sebastiano, F.; Breems, L.J.; Makinwa, K.A.A.; Nauta, B. A 2.4 GHz 830 pJ/bit Duty-Cycled Wake-Up Receiver with ?82 dBm Sensitivity for Crystal-Less Wireless Sensor Nodes. Proceedings of 2010 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 19–23 February 2010; pp. 224–225.
[21]
Cho, H.; Bae, J.; Yoo, H.-J. A 37.5 μW body channel communication wake-up receiver with injection-locking ring oscillator for wireless body area network. Circuits Syst. I Regul. Pap. IEEE Trans. 2013, 60, 1200–1208.
[22]
Van der Doorn, B.; Kavelaars, W.; Langendoen, K. A prototype low-cost wakeup radio for the 868 MHz band. Int. J. Sens. Netw. 2009, 5, 22–32.
[23]
Gu, L.; Stankovic, J.A. Radio-triggered wake-up for wireless sensor networks. Real-Time Syst. 2005, 29, 157–182.
[24]
Ansari, J.; Pankin, D.; M?h?nen, P. Radio-triggered wake-ups with addressing capabilities for extremely low power sensor network applications. Int. J. Wirel. Inf. Netw. 2009, 16, 118–130.
[25]
Huang, X.; Rampu, S.; Wang, X.; Dolmans, G.; de Groot, H. A 2.4 GHz/915 MHz 51 μW Wake-Up Receiver with Offset and Noise Suppression. Proceesings of the IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC'10), San Francisco, CA, USA, 7–11 February 2010; pp. 222–223.
[26]
Yoon, D.-Y.; Jeong, C.-J.; Cartwright, J.; Kang, H.-Y.; Han, S.-K.; Kim, N.-S.; Ha, D.-S.; Lee, S.-G. A new approach to low-power and low-latency wake-up receiver system for wireless sensor nodes. IEEE J. Solid-State Circuits 2012, 47, 2405–2419.
[27]
Marinkovic, S.J.; Popovici, E.M. Nano-power wireless wake-up receiver with serial peripheral interface. IEEE J. Sel. Areas Commun. 2011, 29, 1641–1647.
[28]
Roberts, N.E.; Wentzloff, D.D. A 98nW Wake-Up Radio for Wireless Body Area Networks. Proceesings of 2012 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Montreal, QC, Canada, 17–19 June 2012; pp. 373–376.
[29]
Texas Instruments CC2530EM Reference Design; Texas Instruments: Dallas, TX, USA. Available online: http://www.ti.com/tool/cc2530em (accessed on 1 October 2013).
[30]
Le-Huy, P.; Roy, S. Low-power wake-up radio for wireless sensor networks. Mob. Netw. Appl. 2010, 15, 226–236.
[31]
Jean-Fran?ois, P.; Jean-Jules, B.; Yvon, S. Modeling, design and implementation of a low-power FPGA based asynchronous wake-up receiver for wireless applications. Analog Integr. Circuits Signal Process. 2013, 77, 169–182.
[32]
Durante, M.S.; Mahlknecht, S. An Ultra Low Power Wakeup Receiver for Wireless Sensor Nodes. Proceesings of the 3rd International Conference on Sensor Technologies and Applications (SENSORCOMM), Athens/Glyfada, Greece, 18–23 June 2009; pp. 167–170.
[33]
Hambeck, C.; Mahlknecht, S.; Herndl, T. A 2.4 μW Wake-Up Receiver for Wireless Sensor Nodes with ?71 dBm Sensitivity. Proceesings of the IEEE International Symposium on Circuits and Systems (ISCAS), Rio De Janeiro, Brazil, 15–18 May 2011; pp. 534–537.
[34]
Mathews, J.; Barnes, M.; Young, A.; Arvind, D.K. Low Power Wake-up in Wireless Sensor Networks Using Free Space Optical Communications. Proceesings of the 4th International Conference on Sensor Technologies and Applications (SENSORCOMM), Venice, Italy, 18–25 July 2010; pp. 256–261.
[35]
Kim, G.; Lee, Y.; Bang, S.; Lee, I.; Kim, Y.; Sylvester, D.; Blaauw, D. A 695 pW Standby Power Optical Wake-Up Receiver for Wireless Sensor Nodes. Proceesings of 2012 IEEE Custom Integrated Circuits Conference (CICC), San Jose, CA, USA, 9–12 September 2012; pp. 1–4.
[36]
Lattanzi, E.; Dromedari, M.; Freschi, V.; Bogliolo, A. A sub-μA ultrasonic wake-up trigger with addressing capability for wireless sensor nodes. ISRN Sens. Netw. 2013, doi:10.1155/2013/720817.