We investigated a lab-based hyperspectral imaging system’s response from pure (single) and mixed (two) algal cultures containing known algae types and volumetric combinations to characterize the system’s performance. The spectral response to volumetric changes in single and combinations of algal mixtures with known ratios were tested. Constrained linear spectral unmixing was applied to extract the algal content of the mixtures based on abundances that produced the lowest root mean square error. Percent prediction error was computed as the difference between actual percent volumetric content and abundances at minimum RMS error. Best prediction errors were computed as 0.4%, 0.4% and 6.3% for the mixed spectra from three independent experiments. The worst prediction errors were found as 5.6%, 5.4% and 13.4% for the same order of experiments. Additionally, Beer-Lambert’s law was utilized to relate transmittance to different volumes of pure algal suspensions demonstrating linear logarithmic trends for optical property measurements.
References
[1]
Hallegraeff, G.M. A review of harmful algal blooms and their apparent global increase. Phycologia 1993, 32, 79–99.
[2]
Shumway, S.E. A review of the effects of algal blooms on shellfish and aquaculture. J. World Aquac. Soc. 1990, 21, 65–104.
[3]
Gao, Y.; Yu, Y.; Liang, J.; Gao, Y.; Luo, Q. Isolation of Four Diatom Strains from Tidal Mud toward Biofuel Production. Proceedings of the 2012 International Conference on Biomedical Engineering and Biotechnology (iCBEB), Macau, China, 28–30 May 2012; pp. 348–351.
[4]
Taulant, M.; Chen, M.; Holland, T.; Basu, A. Optical Microplates for Photonic High Throughput Screening of Algal Photosynthesis and Biofuel Production. Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 482–485.
[5]
Renita, A.A.; Amarnath, D.J.; Padhmanabhan, A.; Dhamodaran, B.; Kizhakudan, J. Production of Bio-Diesel from Marine Macro Algae. Proceedings of the Recent Advances in Space Technology Services and Climate Change (RSTSCC), Chennai, Tamil Nadu, India, 13–15 November 2010; pp. 430–432.
[6]
Pienkos, P.T.; Jarvis, E.; Darzins, A. Green Gold. IEEE Spectr. 2010, 47, 34–39.
Themelis, K.E.; Schmidt, F.; Sykioti, O.; Rontogiannis, A.A.; Koutroumbas, K.D.; Daglis, I.A. On the unmixing of MEx/OMEGA hyperspectral data. Planet. Space Sci. 2012, 68, 34–41.
[9]
Féret, J.-B.; Asner, G.P. Semi-supervised methods to identify individual crowns of lowland tropical canopy species using imaging spectroscopy and LiDAR. Remote Sens. 2012, 4, 2457–2476.
Asner, G.P.; Heidebrecht, K.B. Spectral unmixing of vegetation, soil and dry carbon cover in arid regions: Comparing multispectral and hyperspectral observations. Int. J. Remote Sens. 2002, 23, 3939–3958.
[12]
Casal, G.; Sánchez-Carnero, N.; Domínguez-Gómez, J.A.; Kutser, T.; Freire, J. Assessment of AHS (Airborne Hyperspectral Scanner) sensor to map macroalgal communities on the Ria de vigo and Ria de Aldan coast (NW Spain). Mar. Biol. 2012, 159, 1997–2013.
[13]
Liao, W.; Bellens, R.; Pi?urica, A.; Philips, W.; Pi, Y. Classification of hyperspectral data over urban areas using directional morphological profiles and semi-supervised feature extraction. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1177–1190.
[14]
Volent, Z.; Johnsen, G.; Sigernes, F. Microscopic hyperspectral imaging used as a bio-optical taxonomic tool for micro- and macroalgae. Appl. Opt. 2009, 48, 4170–4176.
[15]
Lekki, J.; Anderson, R.; Nguyen, Q.-V.; Demers, J.; Leshkevich, G.; Flatico, J.; Kojima, J. Development of Hyperspectral Remote Sensing Capability for the Early Detection and Monitoring of Harmful Algal Blooms (HABs) in the Great Lakes. Proceedings of the AIAA Infotech Aerospace Conference, Seattle, WA, USA, 6–9 April 2009; pp. 1–14.
[16]
Craig, S.E.; Lohrenz, S.E.; Lee, Z.; Mahoney, K.L.; Kirkpatrick, G.J.; Schofield, O.M.; Steward, R.G. Use of hyperspectral remote sensing reflectance for detection and assessment of the harmful alga. Karenia brevis. Appl. Opt. 2006, 45, 5414–5425.
[17]
Szekielda, K.H.; Marmorino, G.O.; Maness, S.J.; Donato, T.F.; Bowles, J.H.; Miller, W.D.; Rhea, W.J. Airborne hyperspectral imaging of cyanobacteria accumulations in the Potomac River. J. Appl. Remote Sens. 2007, 1, doi:10.1117/1.2813574.
[18]
Oppelt, N.M.; Schulze, F.; Doernhoefer, K.; Eisenhardt, I.; Bartsch, I. Hyperspectral classification approaches for intertidal macroalgae habitat mapping: A case study in Heligoland. Opt. Eng. 2012, 51, doi:10.1117/1.OE.51.11.111703.
[19]
Zuzak, K.J.; Perumanoor, T.J.; Naik, S.C.; Mandhale, M.; Livingston, E.H. A Multimodal Reflectance Hyperspectral Imaging System for Monitoring Wound Healing in Below Knee Amputations. Proceedings of the 2007 IEEE Dallas Engineering in Medicine and Biology Workshop, Dallas, TX, USA, 11–12 November 2007; pp. 16–18.
[20]
Li, Q.; Liu, J.; Xiao, G.; Xue, Y. Hyperspectral Tongue Imaging System used in Tongue Diagnosis. Proceedings of the 2nd International Conference on Bioinformatics and Biomedical Engineering (ICBBE 2008), Shanghai, China, 16–18 May 2008; pp. 2579–2581.
[21]
Roblyer, D.M.; Kurachi, C.; El-Naggar, A.; Williams, M.D.; Gillenwater, A.; Richards-Kortum, R. Multispectral and Hyperspectral in vivo Imaging of the Oral Cavity for Neoplastic Tissue Detection. Proceedings of the Biomedical Optics, OSA Technical Digest (CD), St. Petersburg, FL, USA, 16–19 March 2008.
[22]
Usenik, P.; Bürmen, M.; Fidler, A.; Pernu?, F.; Likar, B. Automated classification and visualization of healthy and diseased hard dental tissues by near-infrared hyperspectral imaging. Appl. Spectrosc. 2012, 66, 1067–1074.
[23]
Li, Y.; Shan, J.; Peng, Y.; Gao, X. Nondestructive Assessment of Beef-Marbling Grade Using Hyperspectral Imaging Technology. Proceedings of the 2011 International Conference on New Technology of Agricultural Engineering, Zibo, Shandong, China, 27–29 May 2011; pp. 779–783.
[24]
Zhou, Y.; Mao, H.; Zhang, X. Hyperspectral Imaging Technology for Detection of Moisture Content of Tomato Leaves. Proceedings of the 2011 4th International Congress on Image and Signal Processing (CISP), Shanghai, China, 15–17 October 2011; pp. 167–171.
[25]
Ma, B.; Xiao, W.; Qu, N.; Wang, W.; Wang, L.; Wu, J. Detection of Fruits Slight Bruises Based on Hyperspectral Imaging Technology. Proceedings of the 2011 International Conference on Electrical and Control Engineering, Yichang, Hubei, China, 16–18 September 2011; pp. 4445–4448.
Li, J.; Xue, L.; Lui, M.; Wang, X.; Luo, C. Hyperspectral imaging technology for determination of dichlorvos residue on the surface naval orange. Chin. Opt. Lett. 2010, 8, 1050–1052.
[28]
Zimba, P.V.; Gitelson, A.A. Remote estimation of chlorophyll concentration in hyper-eutrophic aquatic systems: Model tuning and accuracy optimization. Aquaculture 2006, 256, 272–286.
[29]
Grisham, M.P.; Johnson, R.M.; Zimba, P.V. Detecting Sugarcane yellow leaf virus infection in asymptomatic leaves with hyperspectral remote sensing and associated leaf pigment changes. J. Virol. Methods 2010, 167, 140–145.
[30]
Radomski, A.; Zimba, P.V. Does pond water reflectance influence double-crested Cormorant selection of aquaculture ponds? J. World Aquac. Soc. 2010, 41, 430–437.
[31]
Ritchie, J.E.; Zimba, P.V.; Everrit, J. A review of ARS sponsored remote sensing research in aquatic systems. Photogrammic Eng. Remote Sens. 2003, 69, 695–705.
[32]
Mehrubeoglu, M. Spectral Characterization of a Hyperspectral Imaging System Using Optical Standards. Proceedings of the 2012 IEEE International Conference on Imaging Systems and Techniques (IST), Manchester, UK, 16–17 July 2012; pp. 126–129.
Bin, L.; Chenghai, Y.; Chanussot, J. Linear Unmixing of Multidate Hyperspectral Imagery for Crop Yield Estimation. Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, BC, Canada, 24–29 July 2011; pp. 1573–1576.
[35]
Zhang, D.; Yin, J.; Li, H. Mapping of Surface Sediment Types in Intertidal Flat Using Linear Spectral Unmixing of Hyperion Data. Proceedings of the 2011 International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE), Nanjing, China, 24–26 June 2011; pp. 450–453.
[36]
Silván-Cárdenas, J.L.; Wag, L. Fully constrained linear spectral unmixing: Analytic solution using fuzzy sets. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3992–4002.
[37]
Mehrubeoglu, M.; Teng, M.Y.; Savage, M.; Rafalski, A.; Zimba, P.V. Hyperspectral imaging and analysis of mixed algae species in liquid media. Proceedings of the 2012 IEEE International Conference on Imaging Systems and Techniques (IST), Manchester, UK, 16–17 July 2012; pp. 421–424.
[38]
Weaver, E.; Wrigley, R. Factors affecting the identification of phytoplankton groups by means of remote sensing. NASA Tech. Memo. 1994, 108799, 1–121.
[39]
Absorption Spectra of Chlorophyll a (Light Green) and Chlorophyll b (Turquoise). In Botany online 1996–2004. Available online: http://www.biologie.uni-hamburg.de/b-online/e24/3.htm (accessed on 24 November 2013).
[40]
Chappelle, E.W.; Kim, M.S.; McMurtrey, J.E., III. Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll B, and carotenoids in soybean leaves. Remote Sens. Environ. 1992, 39, 239–247.
[41]
Bioucas-Dias, J.M.; Plaza, A.; Dobigeon, N.; Parente, M.; Du, Q.; Gader, P.; Chanussot, J. Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 354–379.