Traditionally, current transformers are often used for current measurement in low voltage (LV) electrical networks. They have a large physical size and are not designed for use with power electronic circuits. Semiconductor-based current sensing devices such as the Hall sensor and Giant Magnetoresistive (GMR) sensor are advantageous in terms of small size, high sensitivity, wide frequency range, low power consumption, and relatively low cost. Nevertheless, the operational characteristics of these devices limit their current measurement range. In this paper, a design based on using counteracting magnetic field is introduced for extending the GMR current measurement range from 9 A (unipolar) to ±45 A. A prototype has been implemented to verify the design and the linear operation of the circuit is demonstrated by experimental results. A microcontroller unit (MCU) is used to provide an automatic scaling function to optimize the performance of the proposed current sensor.
References
[1]
Caruso, M.J.; Bratland, T.; Smith, C.H.; Schneider, R. A new perspective on magnetic field sensing. Sensors 1998, 15, 34–46.
[2]
Lenz, J.E. A review of magnetic sensors. Proc. IEEE 1990, 78, 973–989.
[3]
Reig, C.; Cubells-Beltrán, M.-D.; Ramírez Mu?oz, D. Magnetic field sensors based on giant magnetoresistance (GMR) technology: Applications in electrical current sensing. Sensors 2009, 9, 7919–7942.
[4]
Binasch, G.; Gru ?nberg, P.; Saurenbach, F.; Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 1989, 39, 4828–4830.
[5]
Baibich, M.N.; Broto, J.M.; Fert, A.; Nguyen Van Dau, F.; Petroff, F.; Etienne, P.; Creuzet, G.; Friederich, A.; Chazelas, J. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 1988, 61, 2472–2475.
[6]
Bernieri, A.; Ferrigno, L.; Laracca, M.; Tamburrino, A. Improving GMR Magnetometer Sensor Uncertainty by Implementing an Automatic Procedure for Calibration and Adjustment. Proceedings of the Improving GMR Magnetometer Sensor Uncertainty by Implementing an Automatic Procedure for Calibration and Adjustment, Instrumentation and Measurement Technology Conference Proceedings, Warsaw, Poland, 1–3 May 2007; pp. 1–6.
[7]
Elmatboly, O.; Homaifar, A.; Zolghadri, M. Giant magneto resistive sensing of critical power system parameters. Proceedings of the 31st Annual Conference of IEEE Industrial Electronics Society, 2005 (IECON 2005), Raleigh, USA, 6–10 November 2005; p. 6.
Daughton, J.M.; Chen, Y.J. GMR materials for low field applications. IEEE Trans. Magnet. 1993, 29, 2705–2710.
[10]
Jedlicska, I.; Weiss, R.; Weigel, R. Linearizing the output characteristic of GMR current sensors through hysteresis modeling. IEEE Trans. Ind. Electron. 2010, 57, 1728–1734.
[11]
Popovic, R.S.; Drljaca, P.M.; Schott, C. Bridging the gap between AMR, GMR, and Hall magnetic sensors. Proccedings of the 23rd International Conference on Microelectronics 2002 (MIEL2002), Nis, Yugoslavia, 12–15 May 2002; pp. 55–58.
[12]
McNeill, N.; Gupta, N.K.; Burrow, S.G.; Holliday, D.; Mellor, P.H. Application of reset voltage feedback for droop minimization in the unidirectional current pulse transformer. IEEE Trans. Power Electron. 2008, 23, 591–599.
[13]
Grandi, G.; Landini, M. Magnetic-field transducer based on closed-loop operation of magnetic sensors. IEEE Trans. Ind. Electron. 2006, 53, 880–885.
[14]
Hudoffsky, B.; Roth-Stielow, J. In New Evaluation of Low Frequency Capture for a Wide Bandwidth Clamping Current Probe for ±800 A Using GMR Sensors. Proceedings of the 14th European Conference on Power Electronics and Applications (EPE 2011), Birmingham, UK, 30 August–1 September 2011; pp. 1–7.
[15]
Hylton, T.L. Limitations of magnetoresistive sensors based on the giant magnetoresistive effect in granular magnetic compounds. Appl. Phys. Lett. 1993, 62, 2431.
[16]
Hylton, T.L.; Coffey, K.R.; Parker, M.A.; Howard, J.K. Low field giant magnetoresistance in discontinuous magnetic multilayers. J. Appl. Phys. 1994, 75, 7058.
Tumanski, S. Thin film magnetoresistive sensors. Instit. Phys. Pub. 2001, 1, 208.
[19]
Spizzo, F.; Angeli, E.; Bisero, D.; Vavassori, P.; Ronconi, F. GMR effect across the transition from multilayer to granular structure. J. Magnet. Magnet. Mater. 2002, 242–245, 473–475.
[20]
Kim, K.Y.; Evetts, J.E. GMR properties of spin-valve structure with Co/Cu-based multilayers. J. Magnet. Magnet. Mater. 1999, 198–199, 92–94.
[21]
Rautela, R.S.; Bhatt, V.; Sharma, P.; Khushu, S.; Walia, P. Mathematical Approach for Designing & Development of Helmholtz Coil for Hyperpolarized Xenon Gas Used in MRI. Proceedings of the 2010 India International Conference on Power Electronics (IICPE), New Delhi, India, 28–30 January 2011; pp. 1–5.
[22]
Bronaugh, E.L. Helmholtz Coils for Calibration of Probes and Sensors: Limits of Magnetic Field Accuracy and Uniformity. Proceedings of the 1995 IEEE International Symposium on Electromagnetic Compatibility, Atlanta, GA, USA, 14–18 August 1995; pp. 72–76.
[23]
Bronaugh, E.L. Helmholtz Coils for EMI Immunity Testing: Stretching the Uniform Field Area. Proceedings of the Seventh International Conference on Electromagnetic Compatibility, York, UK, 28–31 August 1990; pp. 169–172.
[24]
De Malo, C.F.; Araujo, R.L.; Ardjomand, L.M.; Ramos Quorin, N.S.; Ikeda, M.; Costa, A.A. Calibration of Magnetic field meters at 60 Hz using a Helmholtz coil: Constructive Aspects and Calculation of Associated Uncertainites. XVIII Imeko World Congress, Rio de Janeiro, Brazil, 17–22 September 2006; Available online: http://www.imeko.org/publications/wc-2006/PWC-2006-TC4-061u.pdf (accessed on 20 June 2013).
[25]
Hancu, I.; Wood, S.J.; Piel, J.; Whitt, D.B.; Fish, K.M.; Rutt, B.K.; Tropp, J.; Dixon, W.T. Three frequency RF coil designed for optimized imaging of hyperpolarized C labelled compounds. Magnet. Resonance Med. 2008, 60, 928–933.
[26]
Cvetkovic, D.; Cosic, I. Modelling and Design of Extremely Low Frequency Uniform Magnetic Field Exposure Apparatus for in vivo Bioelectromagnetic Studies. Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007. EMBS 2007, Lyon, France, 22–26 August 2007; pp. 1675–1678.
[27]
NVE Magnetic Sensor Catalog. Available online: http://www.nve.com/Downloads/catalog.pdf (accessed on 14 March 2013).