A multi-spectral diffuse reflectance imaging method based on a single snap shot of Red-Green-Blue images acquired with the exposure time of 65 ms (15 fps) was investigated for estimating melanin concentration, blood concentration, and oxygen saturation in human skin tissue. The technique utilizes the Wiener estimation method to deduce spectral reflectance images instantaneously from an RGB image. Using the resultant absorbance spectrum as a response variable and the extinction coefficients of melanin, oxygenated hemoglobin and deoxygenated hemoglobin as predictor variables, multiple regression analysis provides regression coefficients. Concentrations of melanin and total blood are then determined from the regression coefficients using conversion vectors that are numerically deduced in advance by the Monte Carlo simulations for light transport in skin. Oxygen saturation is obtained directly from the regression coefficients. Experiments with a tissue-like agar gel phantom validated the method. In vivo experiments on fingers during upper limb occlusion demonstrated the ability of the method to evaluate physiological reactions of human skin.
References
[1]
Dawson, J.B.; Barker, D.J.; Ellis, D.J.; Grassam, E.; Cotterill, J.A.; Fisher, G.W.; Feather, J.W. A theoretical and experimental study of light absorption and scattering by in vivo skin. Phys. Med. Biol. 1980, 25, 695–709.
[2]
Feather, J.W.; Hajizadeh-Saffar, M.; Leslie, G.; Dawson, J.B. A portable scanning reflectance spectrophotometer using visible wavelengths for the rapid measurement of skin pigments. Phys. Med. Biol. 1989, 34, 807–820.
[3]
Harrison, D.K.; Evans, S.D.; Abbot, N.C.; Beck, J.S.; McCollum, P.T. Spectrophotometric measurements of haemoglobin saturation and concentration in skin during the tuberculin reaction in normal human subjects. Clin. Phys. Physiol. Meas. 1992, 13, 349–363.
[4]
Newton, D.J.; Harrison, D.K.; Delaney, C.J.; Beck, J.S.; McCollum, P.T. Comparison of macro- and maicro-lightguide spectrophotometric measurements of microvascular haemoglobin oxygenation in the tuberculin reaction in normal human skin. Physiol. Meas. 1994, 15, 115–128.
[5]
Stratonnikov, A.A.; Loschenov, V.B. Evaluation of blood oxygen saturation in vivo from diffuse reflectance spectra. J. Biomed. Opt. 2001, 6, 457–467.
[6]
Zonios, G.; Bykowski, J.; Kollias, N. Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy. J. Invest. Dermatol. 2001, 117, 1452–1457.
[7]
Stamatas, G.N.; Kollias, N. Blood stasis contributions to the perception of skin pigmentation. J. Biomed. Opt. 2004, 9, 315–322.
[8]
Nishidate, I.; Aizu, Y.; Mishina, H. Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation. J. Biomed. Opt. 2004, 9, 700–710.
[9]
Bargo, P.R.; Prahl, S.A.; Goodell, T.T.; Sleven, R.A.; Koval, G.; Blair, G.; Jacques, S.L. In vivo determination of optical properties of normal and tumor tissue with white light reflectance and empirical light transport model during endoscopy. J. Biomed. Opt. 2005, 10, 034018.
[10]
Tseng, S.-H.; Bargo, P.; Durkin, A.; Kollias, N. Chromophore concentrations, absorption and scattering properties of human skin in vivo. Opt.Expess 2009, 17, 14599–14617.
[11]
Sowa, M.G.; Payette, J.R.; Hewko, M.D.; Mantsch, H.H. Visible-near infrared multispectral imaging of the rat dorsal skin flap. J. Biomed. Opt. 1999, 4, 474–481.
[12]
Dunn, A.K.; Devor, A.; Bolay, H.; Andermann, M.L.; Moskowitz, M.A.; Dale, A.M.; Boas, D.A. Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation. Opt. Lett. 2003, 28, 28–30.
[13]
Kuzmina, I.; Diebele, I.; Jakovels, D.; Spigulis, J.; Valeine, L.; Kapostinsh, J.; Berzina, A. Towards noncontact skin melanoma selection by multispectral imaging analysis. J. Biomed. Opt. 2011, 16, 060502.
[14]
Nishidate, I.; Wiswadarma, A.; Hase, Y.; Tanaka, N.; Maeda, T.; Niizeki, K.; Aizu, Y. Noninvasive spectral imaging of skin chromophores based on multiple regression analysis aided by Monte Carlo simulation. Opt. Lett. 2011, 36, 3239–3241.
[15]
Arnold, T.; De Biasio, M.; Leitner, R. Hyper-spectral video endoscope for intra-surgery tissue classification using auto-fluorescence and reflectance spectroscopy. Proc. SPIE 2011, 8087, 808711.
[16]
Basiri, A.; Nabili, M.; Mathews, S.; Libin, A.; Groah, S.; Noordmans, H.J.; Ramella-Roman, J.C. Use of a multi-spectral camera in the characterization of skin wounds. Opt. Express 2010, 18, 3244–3257.
[17]
Hardeberg, J.Y. Acquisition and Reproduction of Color Images: Colorimetric and Multispectral Approaches. Ph.D. Thesis, Ecole Nationale Superieure des Telecommunications, Paris, France, 1999.
[18]
Hardeberg, J.Y.; Schmitt, F.; Brettel, H. Multispectral color image capture using liquid crystal tunable filter. Opt. Eng. 2002, 41, 2532–2548.
[19]
Cheung, V.; Westland, S.; Li, C.; Hardeberg, J.; Connah, D. Characterization of trichromatic color cameras by using a new multispectral imaging technique. J. Opt. Soc. Am. 2005, A22, 1231–1240.
[20]
Shen, H.L.; Xin, J.H. Spectral characterization of a color scanner based on optimized adaptive estimation. J. Opt. Soc. Am. 2006, A23, 1566–1569.
[21]
Shen, H.L.; Xin, J.H.; Shao, S.J. Improved reflectance reconstruction for multispectral imaging by combining different techniques. Opt. Express 2007, 15, 5531–s5536.
[22]
K?nig, F. Reconstruction of Natural Spectra from Color Sensor Using Nonlinear Estimation Methods. In Is and T Annual Conference; The Society for Imaging Science and Technology:: Cambridge, MA, USA, 1997; pp. 454–457.
[23]
Stigell, P.; Miyata, K.; Kansari, M.H. Wiener estimation method in estimating of spectral reflectance from RGB image. Patt. Recogn. Image Anal. 2007, 17, 233–242.
[24]
Murakami, Y.; Fukura, K.; Yamaguchi, M.; Ohyama, N. Color reproduction from low-SNR multispectral images using spatio-spectral Wiener estimation. Opt. Express 2008, 16, 4106–4120.
[25]
Chen, S.; Liu, Q. Modified Wiener estimation of diffuse reflectance spectra from RGB values by the synthesis of new color for tissue measurements. J. Biomed. Opt. 2012, 17, 030501.
[26]
Hernández-Andrés, J; Romero, J. Colorimetric and spectroradiometric characteristics of narrow-field-of-view clear skylight in Granada, Spain. J. Opt. Soc. Am. 2001, A18, 412–420.
[27]
Wang, L.-H.; Jacques, S.L.; Zheng, L.-Q. MCML-Monte Carlo modeling of photon transport in multi-layered tissues. Comput. Meth. Progr. Biomed. 1995, 47, 131–146.
[28]
Jacques, S.L.; Glickman, R.D.; Schwartz, J.A. Internal absorption coefficient and threshold for pulsed laser disruption of melanosomes isolated from retinal pigment epithelium. Proc.SPIE 1996, 2681, 468–477.
[29]
Ninni, P.D.; Martelli, F.; Zaccanti, G. The use of India ink in tissue-simulating phantoms. Opt. Express 2010, 18, 26854–26865.
[30]
Nishidate, I.; Tanaka, N.; Kawase, T.; Maeda, T.; Yuasa, T.; Aizu, Y.; Yuasa, T.; Niizeki, K. Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera. J. Biomed. Opt. 2011, 16, 086012.
[31]
Gniechwitz, D.; Reichardt, N.; Ralph, J.; Blaut, M.; Steinhart, H.; Bunzel, M. Isolation and characterisation of a coffee melanoidin fraction. J. Sci. Food. Agric. 2008, 88, 2153–2160.
[32]
Motai, H.; Inoue, S. Conversion of color components of melanoidin produced from the glycine-xylose system. Agric. Bio. Chem. 1974, 38, 233–239.
[33]
Serban, A.; Nissenbaum, A. Light induced production of hydrogen from water by catalysis with ruthenium melanoidins. Int. J. Hydro.Energy. 2000, 25, 733–737.