Energy consumption constraints on computing systems are more important than ever. Maintenance costs for high performance systems are limiting the applicability of processing devices with large dissipation power. New solutions are needed to increase both the computation capability and the power efficiency. Moreover, energy efficient applications should balance performance vs. consumption. Therefore power data of components are important. This work presents the most remarkable alternatives to measure the power consumption of different types of computing systems, describing the advantages and limitations of available power measurement systems. Finally, a methodology is proposed to select the right power consumption measurement system taking into account precision of the measure, scalability and controllability of the acquisition system.
References
[1]
Esmaeilzadeh, H.; Blem, E.; Amant, R., St.; Sankaralingam, K.; Burger, D. Power limitations and dark silicon challenge the future of multicore. ACM Trans. Comput. Syst. 2012, 30, doi:10.1145/2324876.2324879.
[2]
Belady, C. In the data center, power and cooling costs more than the IT equipment it supports. Electron. Cool. 2007. Availbale online: http://www.electronics-cooling.com/ (accessed on 6 April 2013).
[3]
Ranganathan, P. Recipe for efficiency: Principles of power-aware computing. ACM Commun 2010, 53, 60–67.
[4]
Nukada, A.; Ogata, Y.; Endo, T.; Matsuoka, S. Bandwidth Intensive 3-D FFT Kernel for GPUs Using CUDA. Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, Austin, TX, USA, 17–20 November 2008.
[5]
Woo, D.H.; Lee, H.-H.S. Extending Amdahl's Law for energy-efficient computing in the many-core era. Computer 2008, 41, 24–31.
[6]
Bilal, M.; Imtiaz, S.; Asif, S.; Abdul, W. Power Efficient Scalable Hybrid Processor Architecture. Proceedings of 2012 Second International Conference on Digital Information and Communication Technology and It's Applications (DICTAP), Bangkok, Thailand, 18–20 May 2012; pp. 338–342.
[7]
Majumdar, A.; Cadambi, S.; Chakradhar, S.T. An energy-efficient heterogeneous system for embedded learning and classification. IEEE Embed. Syst. Lett. 2011, 3, 42–45.
[8]
Wang, G.; Ren, X. Power-Efficient Work Distribution Method for CPU-GPU Heterogeneous System. Proceedings of International Symposium on Parallel and Distributed Processing with Applications, Atlanta, GA, USA, 19–23 April 2010; pp. 122–129.
[9]
Malony, A.D.; Biersdorff, S.; Shende, S.; Jagode, H.; Tomov, S.; Juckeland, G.; Dietrich, R.; Poole, D.; Lamb, C. Parallel Performance Measurement of Heterogeneous Parallel Systems with GPUs. Proceedings of 2011 International Conference on Parallel Processing (ICPP), Taipei, Taiwan, 13–16 September 2011; pp. 176–185.
[10]
Shaikh, M.Z.; Gregoire, M.; Li, W.; Wroblewski, M.; Simon, S. In situ Power Analysis of General Purpose Graphical Processing Units. Proceedings of 2011 19th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), Ayia Napa, Cyprus, 9–11 February 2011; pp. 40–44.
[11]
Anzt, H.; Castillo, M.; Fernández, J.C.; Heuveline, V.; Igual, F.D.; Mayo, R.; Quintana-Ortí, E.S. Optimization of power consumption in the iterative solution of sparse linear systems on graphics processors. EMCL Prepr. Ser. 2012, 27, 299–307.
[12]
Ren, D.Q. Algorithm level power efficiency optimization for CPU-GPU processing element in data intensive SIMD/SPMD computing. J. Parallel Distrib. Comput. 2011, 71, 245–253.
[13]
Li, T.; John, L.K. Run-time modeling and estimation of operating system power consumption. SIGMETRICS Perform. Eval. Rev. 2003, 31, 160–171.
[14]
Bellosa, F. The benefits of event-driven energy accounting in power-sensitive systems. Proceedings of the 9th ACM SIGOPS European Workshop, Kolding, Denmark, 17–20 September 2000.
[15]
Hong, S.; Kim, H. An integrated GPU power and performance model. ACM SIGARCH Comput. Archit. News 2010, 38, 280–289.
[16]
Damaraju, S.; George, V.; Jahagirdar, S.; Khondker, T.; Milstrey, R.; Sarkar, S.; Siers, S.; Stolero, I.; Subbiah, A. A 22 nm IA Multi-CPU and GPU System-on-Chip. Proceedings of 2012 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 19–22 February 2012; pp. 56–57.
[17]
Suda, R.; Ren, D.Q. Accurate Measurements and Precise Modeling of Power Dissipation of CUDA Kernels Toward Power Optimized High Performance CPU-GPU Computing. Proceedings of 2009 International Conference on Parallel and Distributed Computing, Applications and Technologies, Higashi Hiroshima, Japan, 8–11 December 2009; pp. 432–438.
[18]
Ge, R.; Feng, X.; Song, S.; Chang, H.-C.; Li, D.; Cameron, K.W. PowerPack: Energy profiling and analysis of high-performance systems and applications. IEEE Trans. Parallel Distrib. Syst. 2010, 21, 658–671.
[19]
Poole, S.W. Power Measurement for High Performance Computing State of the Art. Proceedings of 2011 International Green Computing Conference and Workshops, Orlando, FL, USA, 25–28 July 2011; pp. 1–6.
[20]
Nakutis, ?. Embedded systems power consumption measurement methods overview. MATAVIMAI 2009, 2, 29–35.
[21]
Krintz, C.; Wen, Y.; Wolski, R. Application-Level Prediction of Battery Dissipation. Proceedings of the 2004 International Symposium on Low Power Electronics and Design (ISLPED 2004), Newport Beach, CA, USA, 9–11 August; 2004; pp. 224–229.
[22]
Rotem, E.; Naveh, A.; Rajwan, D.; Ananthakrishnan, A.; Weissmann, E. Power-management architecture of the intel microarchitecture code-named Sandy Bridge. IEEE Micro 2012, 32, 20–27.
[23]
Intel Corporation. In Intel Corporation Intel 64 and IA-32 Architectures Software Developer's Manual; Intel Corporation: Santa Clara, CA, USA, 2013.
[24]
H?hnel, M.; D?bel, B. Measuring energy consumption for short code paths using RAPL. ACM SIGMETRICS Perform. Eval. Rev. 2012, doi:10.1145/2425248.2425252.