We present and analyze a method to improve the morphology and mechanical properties of gold thin films for use in optical sensors or other settings where good adhesion of gold to a substrate is of importance and where controlled topography/roughness is key. To improve the adhesion of thermally evaporated gold thin films, we introduce a gold deposition step on SU-8 photoresist prior to UV exposure but after the pre-bake step of SU-8 processing. Shrinkage and distribution of residual stresses, which occur during cross-linking of the SU-8 polymer layer in the post-exposure baking step, are responsible for the higher adhesion of the top gold film to the post-deposition cured SU-8 sublayer. The SU-8 underlayer can also be used to tune the resulting gold film morphology. Our promoter-free protocol is easily integrated with existing sensor microfabrication processes.
References
[1]
Nordstrom, M.; Johansson, A.; Sánchez Nogueron, E.; Calleja, M.; Boisen, A. Investigation of the bond strength between the photo-sensitive polymer SU-8 and gold. Microelectron. Eng. 2005, 78–79.
[2]
Wilson, D.M.; Hoyt, S.; Janata, J.; Booksh, K.; Obando, L. Chemical sensors for portable, handheld field instruments. IEEE Sens. J. 2001, 1, 256–274.
Haynes, C.L.; Yonzon, C.; Zhang, X.; van Duyne, R. Surface-enhanced Raman sensors: Early history and the development of sensors for quantitative biowarfare agent and glucose detection. J. Raman Spectrosc. 2005, 36, 471–484.
[5]
Taguchi, Y.; Takano, E.; Takeuchi, T. SPR sensing of bisphenol a using molecularly imprinted nanoparticles immobilized on slab optical waveguide with consecutive parallel Au and Ag deposition bands coexistent with bisphenol a-immobilized Au nanoparticles. Langmuir 2012, 28, 7083–7088.
[6]
George, M.A.; Glaunsinger, W.S.; Thundat, T.; Lindsay, S.M. Electrical, spectroscopic, and morphological investigation of chromium diffusion through gold films. Thin Solid Films 1990, 189, 59–72.
[7]
Audino, R.; Destefanis, G.; Gorgellino, F.; Pollino, E.; Tamagno, S. Interface behavior evaluation in gold/chromium, gold/titanium and gold/palladium/titanium thin films by means of resistivity and stylus measurements. Thin Solid Films 1976, 36, 343–347.
Moody, N.R.; Adams, D.P.; Medlin, D.; Headley, T.; Yang, N.; Volinsky, A. Effects of diffusion on interfacial fracture of gold-chromium hybrid microcircuit films. Int. J. Fract. 2003, 119, 407–419.
[10]
Ge, J.; Kivilahti, J.K. Effects of surface treatments on the adhesion of Cu and Cr/Cu metallizations to a multifunctional photoresist. J. Appl. Phys. 2002, 92, 3007–3015.
[11]
Johansson, A.; Blagoi, G.; Boisen, A. Polymeric cantilever-based biosensors with integrated readout. Appl. Phys. Lett. 2006, doi:10.1063/1.2364843.
[12]
Sameoto, D.; Lee, S.W.; Parameswaran, M. Wirebonding characterization and optimization on thick film SU-8 MEMS structures and actuators. J. Micromech. Microeng. 2008, doi:10.1109/sensor.2007.4300568.
[13]
Allara, D.L.; Dwight, D.W. Surface enhanced raman spectroscopy (SERS) substrates exhibiting uniform high enhancement and stability. U.S. Patent 7450227, 2008.
[14]
Cardozo, B.L.; Pang, S.W. Patterning of polyfluorene based polymer light emitting diodes by reversal imprint lithography. J. Vac. Sci. Technol. B 2008, 26, 2385–2389.
[15]
Chen, H.L.; Chuang, S.Y.; Lee, W.H.; Kuo, S.S.; Su, W.F.; Ku, S.L.; Chou, Y.F. Extraordinary transmittance in three-dimensional crater, pyramid, and hole-array structures prepared through reversal imprinting of metal films. Opt. Express 2009, 17, 1636–1645.
[16]
Peng, C.; Cardozo, B.L.; Pang, S.W. Three-dimensional metal patterning over nanostructures by reversal imprint. J. Vac. Sci. Technol. B 2008, 26, 632–635.
[17]
Schneider, A.; Ibbotson, R.H.; Dunn, R.J.; Huq, E. Arrays of SU-8 microcantilevers with integrated piezoresistive sensors for parallel AFM applications. Microelectron. Eng. 2011, 88, 2390–2393.
[18]
Godin, M.; Tabard-Cossa, V.; Miyahara, Y.; Monga, T.; Williams, P.J.; Beaulieu, L.Y.; Lennox, R.B.; Grutter, P. Cantilever-based sensing: The origin of surface stress and optimization strategies. Nanotechnology 2010, doi:10.1088/0957-4484/21/7/075501.
[19]
Mertens, J.; Calleja, M.; Ramos, D.; Taryn, A.; Tamayo, J. Role of the gold film nanostructure on the nanomechanical response of microcantilever sensors. J. Appl. Phys. 2007, doi:10.1063/1.2434011.
[20]
Calleja, M.; Tamayo, J.; Nordstr?m, M.; Boisen, A. Low-Noise polymeric nanomechanical biosensors. Appl. Phys. Lett. 2006, doi:10.1063/1.2187437.
[21]
Hutter, J.L.; Bechhoefer, J. Calibration of atomic force microscope tips. Rev. Sci. Instrum. 1993, 64, 1868–1873.
[22]
Hay, J.L.; Wolff, P.J. Small correction required when applying the Hertzian contact model to instrumented indentation data. J. Mater. Res. 2001, 16, 1280–1286.
Kipp, D.O. Metal Material Data Sheets; MatWeb-Division of Automation Creation, Inc: Blacksburg, VA, USA, 2010.
[25]
Guo, S.; Akhremitchev, B.B. Packing density and structural heterogeneity of insulin amyloid fibrils measured by AFM nanoindentation. Biomacromolecules 2006, 7, 1630–1636.
[26]
Pratt, J.R.; Smith, D.T.; Newell, D.B.; Kramar, J.A.; Whitenton, E. Progress toward Système International d'Unités traceable force metrology for nanomechanics. J. Mater. Res. 2004, 19, 366–379.
[27]
Audoly, B. Mode-dependent toughness and the delamination of compressed thin films. J. Mech. Phys. Solids. 2000, 48, 2315–2332.
[28]
Volinsky, A.A.; Moody, N.R.; Gerberich, W.W. Nanoindentation of Au and Pt/Cu thin films at elevated temperatures. J. Mater. Res. 2004, 19, 2650–2657.
[29]
Du, K.; Pang, X.; Chen, C.; Volinsky, A.A. Mechanical Properties of Evaporated Gold Films. Hard Substrate Effect Correction. Mater. Res. Soc. Symp. Proc. 2008, 1086, 98–103.
[30]
Moody, N.R.; Adams, D.P.; Volinsky, A.A.; Kriese, M.D.; Gerberich, W.W. Annealing effects on interfacial fracture of gold-chromium films in hybrid microcircuits. Mater. Res. Soc. Symp. Proc. 2000, 586, 195–206.