全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Magnetic Resonance Imaging of Ischemia Viability Thresholds and the Neurovascular Unit

DOI: 10.3390/s130606981

Keywords: stroke, ischemic penumbra, neurovascular unit, MRI

Full-Text   Cite this paper   Add to My Lib

Abstract:

Neuroimaging has improved our understanding of the evolution of stroke at discreet time points helping to identify irreversibly damaged and potentially reversible ischemic brain. Neuroimaging has also contributed considerably to the basic premise of acute stroke therapy which is to salvage some portion of the ischemic region from evolving into infarction, and by doing so, maintaining brain function and improving outcome. The term neurovascular unit (NVU) broadens the concept of the ischemic penumbra by linking the microcirculation with neuronal-glial interactions during ischemia reperfusion. Strategies that attempt to preserve the individual components (endothelium, glia and neurons) of the NVU are unlikely to be helpful if blood flow is not fully restored to the microcirculation. Magnetic resonance imaging (MRI) is the foremost imaging technology able to bridge both basic science and the clinic via non-invasive real time high-resolution anatomical delineation of disease manifestations at the molecular and ionic level. Current MRI based technologies have focused on the mismatch between perfusion-weighted imaging (PWI) and diffusion weighted imaging (DWI) signals to estimate the tissue that could be saved if reperfusion was achieved. Future directions of MRI may focus on the discordance of recanalization and reperfusion, providing complimentary pathophysiological information to current compartmental paradigms of infarct core (DWI) and penumbra (PWI) with imaging information related to cerebral blood flow, BBB permeability, inflammation, and oedema formation in the early acute phase. In this review we outline advances in our understanding of stroke pathophysiology with imaging, transcending animal stroke models to human stroke, and describing the potential translation of MRI to image important interactions relevant to acute stroke at the interface of the neurovascular unit.

References

[1]  Albers, G.W.; Thijs, V.N.; Wechsler, L.; Kemp, S.; Schlaug, G.; Skalabrin, E.; Bammer, R.; Kakuda, W.; Lansberg, M.G.; Shuaib, A.; et al. Magnetic resonance imaging profiles predict clinical response to early reperfusion: The diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann. Neurol. 2006, 60, 508–517.
[2]  Astrup, J.; Siesjo, B.K.; Symon, L. Thresholds in cerebral ischemia–the ischemic penumbra. Stroke 1981, 12, 723–725.
[3]  Reese, T.; Bochelen, D.; Sauter, A.; Beckmann, N.; Rudin, M. Magnetic resonance angiography of the rat cerebrovascular system without the use of contrast agents. NMR Biomed. 1999, 12, 189–196.
[4]  Haorah, J.; Heilman, D.; Knipe, B.; Chrastil, J.; Leibhart, J.; Ghorpade, A.; Miller, D.W.; Persidsky, Y. Ethanol-induced activation of myosin light chain kinase leads to dysfunction of tight junctions and blood-brain barrier compromise. Alcohol. Clin. Exp. Res. 2005, 29, 999–1009.
[5]  Simard, J.M.; Kent, T.A.; Chen, M.; Tarasov, K.V.; Gerzanich, V. Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications. Lancet Neurol. 2007, 6, 258–268.
[6]  Haorah, J.; Ramirez, S.H.; Schall, K.; Smith, D.; Pandya, R.; Persidsky, Y. Oxidative stress activates protein tyrosine kinase and matrix metalloproteinases leading to blood-brain barrier dysfunction. J. Neurochem. 2007, 101, 566–576.
[7]  Han, F.; Shirasaki, Y.; Fukunaga, K. Microsphere embolism-induced endothelial nitric oxide synthase expression mediates disruption of the blood-brain barrier in rat brain. J. Neurochem. 2006, 99, 97–106.
[8]  Marchal, G.; Serrati, C.; Rioux, P.; Petit-Taboue, M.C.; Viader, F.; de, l. S.V.; Le, D.F.; Lochon, P.; Derlon, J.M.; Orgogozo, J.M. PET imaging of cerebral perfusion and oxygen consumption in acute ischaemic stroke: relation to outcome. Lancet 1993, 341, 925–927.
[9]  Marchal, G.; Rioux, P.; Serrati, C.; Furlan, M.; Derlon, J.M.; Viader, F.; Baron, J.C. Value of acute-stage positron emission tomography in predicting neurological outcome after ischemic stroke: further assessment. Stroke 1995, 26, 524–525.
[10]  Ding, G.; Jiang, Q.; Zhang, L.; Zhang, Z.; Knight, R.A.; Soltanian-Zadeh, H.; Lu, M.; Ewing, J.R.; Li, Q.; Whitton, P.A.. sss Multiparametric ISODATA analysis of embolic stroke and rt-PA intervention in rat. J. Neurol. Sci. 2004, 223, 135–143.
[11]  Lansberg, M.G.; Thijs, V.N.; Bammer, R.; Olivot, J.M.; Marks, M.P.; Wechsler, L.R.; Kemp, S.; Albers, G.W. The MRA-DWI mismatch identifies patients with stroke who are likely to benefit from reperfusion. Stroke 2008, 39, 2491–2496.
[12]  Lansberg, M.G.; Straka, M.; Kemp, S.; Mlynash, M.; Wechsler, L.R.; Jovin, T.G.; Wilder, M.J.; Lutsep, H.L.; Czartoski, T.J.; Bernstein, R.A.; et al. MRI profile and response to endovascular reperfusion after stroke (DEFUSE 2): A prospective cohort study. Lancet Neurol. 2012, 11, 860–867.
[13]  Lees, K.R.; Bluhmki, E.; von Kummer, R.; Brott, T.G.; Toni, D.; Grotta, J.C.; Albers, G.W.; Kaste, M.; Marler, J.R.; Hamilton, S.A.; et al. Time to treatment with intravenous alteplase and outcome in stroke: an updated pooled analysis of ECASS, ATLANTIS, NINDS, and EPITHET trials. Lancet 2010, 375, 1695–1703.
[14]  Davis, S.M.; Donnan, G.A.; Parsons, M.W.; Levi, C.; Butcher, K.S.; Peeters, A.; Barber, P.A.; Bladin, C.; De Silva, D.A.; Byrnes, G.; et al. Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): A placebo-controlled randomised trial. Lancet Neurol. 2008, 7, 299–309.
[15]  De Silva, D.A.; Fink, J.N.; Christensen, S.; Ebinger, M.; Bladin, C.; Levi, C.R.; Parsons, M.; Butcher, K.; Barber, P.A.; Donnan, G.A.; et al. Assessing reperfusion and recanalization as markers of clinical outcomes after intravenous thrombolysis in the echoplanar imaging thrombolytic evaluation trial (EPITHET). Stroke 2009, 40, 2872–2874.
[16]  Del Zoppo, G.J. The neurovascular unit, matrix proteases, and innate inflammation. Ann. N. Y. Acad. Sci. 2010, 1207, 46–49.
[17]  Lo, E.H. A new penumbra: Transitioning from injury into repair after stroke. Nat. Med. 2008, 14, 497–500.
[18]  Lees, K.R.; Zivin, J.A.; Ashwood, T.; Davalos, A.; Davis, S.M.; Diener, H.C.; Grotta, J.; Lyden, P.; Shuaib, A.; Hardemark, H.G.; et al. NXY-059 for acute ischemic stroke. N Engl. J. Med. 2006, 354, 588–600.
[19]  Knight, R.A.; Ordidge, R.J.; Helpern, J.A.; Chopp, M.; Rodolosi, L.C.; Peck, D. Temporal evolution of ischemic damage in rat brain measured by proton nuclear magnetic resonance imaging. Stroke 1991, 22, 802–808.
[20]  Nagaraja, T.N.; Karki, K.; Ewing, J.R.; Croxen, R.L.; Knight, R.A. Identification of variations in blood-brain barrier opening after cerebral ischemia by dual contrast-enhanced magnetic resonance imaging and T 1sat measurements. Stroke 2008, 39, 427–432.
[21]  Raichle, M. E. The pathophysiology of brain ischemia. Ann.Neurol. 1983, 13, 2–10.
[22]  Wise, R.J.; Rhodes, C.G.; Gibbs, J.M.; Hatazawa, J.; Palmer, T.; Frackowiak, R.S.; Jones, T. Disturbance of oxidative metabolism of glucose in recent human cerebral infarcts. Ann. Neurol 1983, 14, 627–637.
[23]  Heiss, W.D.; Hayakawa, T.; Waltz, A.G. Cortical neuronal function during ischemia. Effects of occlusion of one middle cerebral artery on single-unit activity in cats. Arch. Neurol 1976, 33, 813–820.
[24]  Hakim, A.M. The cerebral ischemic penumbra. Can. J. Neurol Sci. 1987, 14, 557–559.
[25]  Baron, J.C.; Bousser, M.G.; Rey, A.; Guillard, A.; Comar, D.; Castaigne, P. Reversal of focal “misery-perfusion syndrome” by extra-intracranial arterial bypass in hemodynamic cerebral ischemia. A case study with 15O positron emission tomography. Stroke 1981, 12, 454–459.
[26]  Heiss, W.D.; Rosner, G. Functional recovery of cortical neurons as related to degree and duration of ischemia. Ann. Neurol 1983, 14, 294–301.
[27]  Hossmann, K.A. Viability thresholds and the penumbra of focal ischemia. Ann. Neurol. 1994, 36, 557–565.
[28]  Dirnagl, U.; Iadecola, C.; Moskowitz, M.A. Pathobiology of ischaemic stroke: An integrated view. Trends Neurosci. 1999, 22, 391–397.
[29]  Tagaya, M.; Haring, H.P.; Stuiver, I.; Wagner, S.; Abumiya, T.; Lucero, J.; Lee, P.; Copeland, B.R.; Seiffert, D.; del Zoppo, G.J. Rapid loss of microvascular integrin expression during focal brain ischemia reflects neuron injury. J. Cereb. Blood Flow Metab 2001, 21, 835–846.
[30]  Rosenberg, G.A. Matrix metalloproteinases in neuroinflammation. Glia 2002, 39, 279–291.
[31]  Rosell, A.; Foerch, C.; Murata, Y.; Lo, E.H. Mechanisms and markers for hemorrhagic transformation after stroke. Acta Neurochir. Suppl. 2008, 105, 173–178.
[32]  Rosell, A.; Lo, E.H. Multiphasic roles for matrix metalloproteinases after stroke. Curr. Opin. Pharmacol. 2008, 8, 82–89.
[33]  del Zoppo, G.J.; Milner, R. Integrin-matrix interactions in the cerebral microvasculature. Arterioscler. Thromb. Vascul. Biol. 2006, 26, 1966–1975.
[34]  Chakravarty, S.; Herkenham, M. Toll-like receptor 4 on nonhematopoietic cells sustains CNS inflammation during endotoxemia, independent of systemic cytokines. J. Neurosci. 2005, 25, 1788–1796.
[35]  Marsh, B.J.; Stevens, S.L.; Hunter, B.; Stenzel-Poore, M.P. Inflammation and the emerging role of the toll-like receptor system in acute brain ischemia. Stroke 2009, 40, S34–S37.
[36]  Abe, T.; Shimamura, M.; Jackman, K.; Kurinami, H.; Anrather, J.; Zhou, P.; Iadecola, C. Key role of CD36 in Toll-like receptor 2 signaling in cerebral ischemia. Stroke 2010, 41, 898–904.
[37]  Greenwood, J.; Heasman, S.J.; Alvarez, J.I.; Prat, A.; Lyck, R.; Engelhardt, B. Review: Leucocyte-endothelial cell crosstalk at the blood-brain barrier: a prerequisite for successful immune cell entry to the brain. Neuropathol. Appl. Neurobiol. 2011, 37, 24–39.
[38]  Huang, J.; Upadhyay, U.M.; Tamargo, R.J. Inflammation in stroke and focal cerebral ischemia. Surgi. Neurol. 2006, 66, 232–245.
[39]  del Zoppo, G.J.; Schmid-Schonbein, G.W.; Mori, E.; Copeland, B.R.; Chang, C.M. Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons. Stroke 1991, 22, 1276–1283.
[40]  Mori, E.; Del Zoppo, G.J.; Chambers, J.D.; Copeland, B.R.; Arfors, K.E. Inhibition of polymorphonuclear leukocyte adherence suppresses no-reflow after focal cerebral ischemia in baboons. Stroke 1992, 23, 712–718.
[41]  Okada, Y.; Copeland, B.R.; Fitridge, R.; Koziol, J.A.; Del Zoppo, G.J. Fibrin contributes to microvascular obstructions and parenchymal changes during early focal cerebral ischemia and reperfusion. Stroke 1994, 25, 1847–1853.
[42]  Wagner, S.; Tagaya, M.; Koziol, J.A.; Quaranta, V.; del Zoppo, G.J. Rapid disruption of an astrocyte interaction with the extracellular matrix mediated by integrin alpha 6 beta 4 during focal cerebral ischemia/reperfusion. Stroke 1997, 28, 858–865.
[43]  Hossmann, K.A. The two pathophysiologies of focal brain ischemia: implications for translational stroke research. J. Cereb. Blood Flow Metab 2012, 32, 1310–1316.
[44]  Hossmann, K.A. Pathophysiological basis of translational stroke research. Folia Neuropathol. 2009, 47, 213–227.
[45]  Jones, T.H.; Morawetz, R.B.; Crowell, R.M.; Marcoux, F.W.; FitzGibbon, S.J.; DeGirolami, U.; Ojemann, R.G. Thresholds of focal cerebral ischemia in awake monkeys. J. Neurosurg. 1981, 54, 773–782.
[46]  Heiss, W.D.; Sobesky, J.; Smekal, U.; Kracht, L.W.; Lehnhardt, F.G.; Thiel, A.; Jacobs, A.H.; Lackner, K. Probability of cortical infarction predicted by flumazenil binding and diffusion-weighted imaging signal intensity: A comparative positron emission tomography/magnetic resonance imaging study in early ischemic stroke. Stroke 2004, 35, 1892–1898.
[47]  Heiss, W.D.; Fink, G.R.; Huber, M.; Herholz, K. Positron emission tomography imaging and the therapeutic window. Stroke 1993, 24, I50–I56.
[48]  Baron, J.C.; Rougemont, D.; Soussaline, F.; Bustany, P.; Crouzel, C.; Bousser, M.G.; Comar, D. Local interrelationships of cerebral oxygen consumption and glucose utilization in normal subjects and in ischemic stroke patients: a positron tomography study. J. Cereb. Blood Flow Metab 1984, 4, 140–149.
[49]  Marchal, G.; Rioux, P.; Petit-Tabou?, M.C.; Sette, G.; Trav?re, J.M.; Le Poec, C.; Courtheoux, P.; Derlon, J.M.; Baron, J.C. Regional cerebral oxygen consumption, blood flow, and blood volume in healthy human aging. Arch. Neurol. 1992, 49, 1013–1020.
[50]  Sobesky, J. Refining the mismatch concept in acute stroke: Lessons learned from PET and MRI. J. Cereb. Blood Flow Metab 2012, 32, 1416–1425.
[51]  Baron, J.C.; Cohen, L.G.; Cramer, S.C.; Dobkin, B.H.; Johansen-Berg, H.; Loubinoux, I.; Marshall, R.S.; Ward, N.S. Neuroimaging in stroke recovery: A position paper from the First International Workshop on Neuroimaging and Stroke Recovery. Cerebrovasc. Dis. 2004, 18, 260–267.
[52]  Heiss, W.D. The ischemic penumbra: Correlates in imaging and implications for treatment of ischemic stroke. The Johann Jacob Wepfer award 2011. Cerebrovasc. Dis. 2011, 32, 307–320.
[53]  Takasawa, M.; Beech, J.S.; Fryer, T.D.; Jones, P.S.; Ahmed, T.; Smith, R.; Aigbirhio, F.I.; Baron, J.C. Single-subject statistical mapping of acute brain hypoxia in the rat following middle cerebral artery occlusion: a microPET study. Exp. Neurol. 2011, 229, 251–258.
[54]  Baron, J.C.; Marchal, G. Cerebral and cardiovascular ageing and brain energy metabolism. Studies with positron emission tomography. Presse. Med. 1992, 21, 1231–1237.
[55]  Baron, J.C.; Petit-Tabou?, M.C.; Le Doze, F.; Desgranges, B.; Ravenel, N.; Marchal, G. Right frontal cortex hypometabolism in transient global amnesia. A PET study. Brain 1994, 117, 545–552.
[56]  Heiss, W.D.; Graf, R.; Wienhard, K.; L?ttgen, J.; Saito, R.; Fujita, T.; Rosner, G.; Wagner, R. Dynamic penumbra demonstrated by sequential multitracer PET after middle cerebral artery occlusion in cats. J. Cereb. Blood Flow Metab. 1994, 14, 892–902.
[57]  Griffeth, V.E.; Buxton, R.B. A theoretical framework for estimating cerebral oxygen metabolism changes using the calibrated-BOLD method: Modeling the effects of blood volume distribution, hematocrit, oxygen extraction fraction, and tissue signal properties on the BOLD signal. Neuroimage 2011, 58, 198–212.
[58]  Mark, C.I.; Pike, G.B. Indication of BOLD-specific venous flow-volume changes from precisely controlled hyperoxic vs. hypercapnic calibration. J. Cereb. Blood Flow Metab 2012, 32, 709–719.
[59]  Zhu, X.H.; Chen, J.M.; Tu, T.W.; Chen, W.; Song, S.K. Simultaneous and noninvasive imaging of cerebral oxygen metabolic rate, blood flow and oxygen extraction fraction in stroke mice. Neuroimage 2013, 64, 437–447.
[60]  Guadagno, J.V.; Warburton, E.A.; Aigbirhio, F.I.; Smielewski, P.; Fryer, T.D.; Harding, S.; Price, C.J.; Gillard, J.H.; Carpenter, T.A.; Baron, J.C. Does the acute diffusion-weighted imaging lesion represent penumbra as well as core? A combined quantitative PET/MRI voxel-based study. J. Cereb. Blood Flow Metab 2004, 24, 1249–1254.
[61]  Baird, A.E.; Warach, S. Magnetic resonance imaging of acute stroke. J. Cereb. Blood Flow Metab. 1998, 18, 583–609.
[62]  Parsons, M.W.; Barber, P.A.; Davis, S.M. Relationship between severity of MR perfusion deficit and DWI lesion evolution. Neurology 2002, 58, 1707.
[63]  Schellinger, P.D.; Kohrmann, M. MRA/DWI mismatch: A novel concept or something one could get easier and cheaper? Stroke 2008, 39, 2423–2424.
[64]  Furlan, A.J.; Eyding, D.; Albers, G.W.; Al-Rawi, Y.; Lees, K.R.; Rowley, H.A.; Sachara, C.; Soehngen, M.; Warach, S.; Hacke, W. Dose Escalation of Desmoteplase for Acute Ischemic Stroke (DEDAS): Evidence of safety and efficacy 3 to 9 hours after stroke onset. Stroke 2006, 37, 1227–1231.
[65]  Marshall, R.S.; Rundek, T.; Sproule, D.M.; Fitzsimmons, B.F.; Schwartz, S.; Lazar, R.M. Monitoring of cerebral vasodilatory capacity with transcranial Doppler carbon dioxide inhalation in patients with severe carotid artery disease. Stroke 2003, 34, 945–949.
[66]  Heiss, W.D.; Huber, M.; Fink, G.R.; Herholz, K.; Pietrzyk, U.; Wagner, R.; Wienhard, K. Progressive derangement of periinfarct viable tissue in ischemic stroke. J. Cereb. Blood Flow Metab 1992, 12, 193–203.
[67]  Muir, K.W.; Buchan, A.; von Kummer, R.; Rother, J.; Baron, J.C. Imaging of acute stroke. Lancet Neurol. 2006, 5, 755–768.
[68]  Kidwell, C.S.; Jahan, R.; Gornbein, J.; Alger, J.R.; Nenov, V.; Ajani, Z.; Feng, L.; Meyer, B.C.; Olson, S.; Schwamm, L.H.; et al. A trial of imaging selection and endovascular treatment for ischemic stroke. N. Engl. J. Med. 2013, 368, 914–923.
[69]  Neumann-Haefelin, T.; Kastrup, A.; de Crespigny, A.; Yenari, M.A.; Ringer, T.; Sun, G.H.; Moseley, M.E. Serial MRI after transient focal cerebral ischemia in rats: Dynamics of tissue injury, blood-brain barrier damage, and edema formation. Stroke 2000, 31, 1965–1972.
[70]  van Lookeren Campagne, M.; Thomas, G.R.; Thibodeaux, H.; Palmer, J.T.; Williams, S.P.; Lowe, D.G.; van Bruggen, N. Secondary reduction in the apparent diffusion coefficient of water, increase in cerebral blood volume, and delayed neuronal death after middle cerebral artery occlusion and early reperfusion in the rat. J. Cereb. Blood Flow Metab. 1999, 19, 1354–1364.
[71]  Kranz, P.G.; Eastwood, J.D. Does diffusion-weighted imaging represent the ischemic core? An evidence-based systematic review. AJNR. Amer. J. Neuroradiol. 2009, 30, 1206–1212.
[72]  Rivers, C.S.; Wardlaw, J.M. What has diffusion imaging in animals told us about diffusion imaging in patients with ischaemic stroke. Cerebrovasc. Dis. 2005, 19, 328–336.
[73]  Barone, F.C.; Clark, R.K.; Feuerstein, G.; Lenkinski, R.E.; Sarkar, S.K. Quantitative comparison of magnetic resonance imaging (MRI) and histologic analyses of focal ischemic damage in the rat. Brain Res. Bull. 1991, 26, 285–291.
[74]  Jiang, Q.; Chopp, M.; Zhang, Z.G.; Knight, R.A.; Jacobs, M.; Windham, J.P.; Peck, D.; Ewing, J.R.; Welch, K.M. The temporal evolution of MRI tissue signatures after transient middle cerebral artery occlusion in rat. J. Neurol Sci. 1997, 145, 15–23.
[75]  Kaur, J.; Tuor, U.I.; Zhao, Z.; Barber, P.A. Quantitative MRI reveals the elderly ischemic brain is susceptible to increased early blood-brain barrier permeability following tissue plasminogen activator related to claudin 5 and occludin disassembly. J. Cereb. Blood Flow Metab 2011, 31, 1874–1885.
[76]  Kaur, J.; Tuor, U.I.; Zhao, Z.; Petersen, J.; Jin, A.Y.; Barber, P.A. Quantified T1 as an adjunct to apparent diffusion coefficient for early infarct detection: A high-field magnetic resonance study in a rat stroke model. Offi. J. Int. Stroke Soc. 2009, 4, 159–168.
[77]  Ostergaard, L.; Weisskoff, R.M.; Chesler, D.A.; Gyldensted, C.; Rosen, B.R. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis. Magn. Reson. Med. 1996, 36, 715–725.
[78]  Kane, I.; Sandercock, P.; Wardlaw, J. Magnetic resonance perfusion diffusion mismatch and thrombolysis in acute ischaemic stroke: A systematic review of the evidence to date. J. Neurol Neurosurg. Psych. 2007, 78, 485–491.
[79]  Grandin, C.B.; Duprez, T.P.; Smith, A.M.; Oppenheim, C.; Peeters, A.; Robert, A.R.; Cosnard, G. Which MR-derived perfusion parameters are the best predictors of infarct growth in hyperacute stroke? Comparative study between relative and quantitative measurements. Radiology 2002, 223, 361–370.
[80]  Zaro-Weber, O.; Moeller-Hartmann, W.; Heiss, W.D.; Sobesky, J. The performance of MRI-based cerebral blood flow measurements in acute and subacute stroke compared with 15O-water positron emission tomography: Identification of penumbral flow. Stroke 2009, 40, 2413–2421.
[81]  Rivers, C.S.; Wardlaw, J.M.; Armitage, P.A.; Bastin, M.E.; Carpenter, T.K.; Cvoro, V.; Hand, P.J.; Dennis, M.S. Do acute diffusion- and perfusion-weighted MRI lesions identify final infarct volume in ischemic stroke. Stroke 2006, 37, 98–104.
[82]  Sobesky, J.; Zaro, W.O.; Lehnhardt, F.G.; Hesselmann, V.; Neveling, M.; Jacobs, A.; Heiss, W.D. Does the mismatch match the penumbra? Magnetic resonance imaging and positron emission tomography in early ischemic stroke. Stroke 2005, 36, 980–985.
[83]  Dani, K.A.; Thomas, R.G.; Chappell, F.M.; Shuler, K.; MacLeod, M.J.; Muir, K.W.; Wardlaw, J.M. Computed tomography and magnetic resonance perfusion imaging in ischemic stroke: definitions and thresholds. Ann. Neurol 2011, 70, 384–401.
[84]  Parsons, M.; Spratt, N.; Bivard, A.; Campbell, B.; Chung, K.; Miteff, F.; O'Brien, B.; Bladin, C.; McElduff, P.; Allen, C.; et al. A randomized trial of tenecteplase versus alteplase for acute ischemic stroke. N. Engl. J. Med. 2012, 366, 1099–1107.
[85]  Wardlaw, J.M.; Murray, V.; Berge, E.; Del Zoppo, G.J. Thrombolysis for acute ischaemic stroke. Cochrane. Database. Syst. Rev. 2009, 4, CD000213.
[86]  Barber, P.A.; Foniok, T.; Kirk, D.; Buchan, A.M.; Laurent, S.; Boutry, S.; Muller, R.N.; Hoyte, L.; Tomanek, B.; Tuor, U.I. MR molecular imaging of early endothelial activation in focal ischemia. Ann. Neurol. 2004, 56, 116–120.
[87]  Jin, A.Y.; Tuor, U.I.; Rushforth, D.; Filfil, R.; Kaur, J.; Ni, F.; Tomanek, B.; Barber, P.A. Magnetic resonance molecular imaging of post-stroke neuroinflammation with a P-selectin targeted iron oxide nanoparticle. Contrast. Med. Mol. Imag. 2009, 4, 305–311.
[88]  Weissleder, R.; Ntziachristos, V. Shedding light onto live molecular targets. Nat. Med. 2003, 9, 123–128.
[89]  Chauveau, F.; Cho, T.H.; Berthezene, Y.; Nighoghossian, N.; Wiart, M. Imaging inflammation in stroke using magnetic resonance imaging. Int. J. Clin. Pharmacol. Therap. 2010, 48, 718–728.
[90]  Jin, A.Y.; Tuor, U.I.; Rushforth, D.; Kaur, J.; Muller, R.N.; Petterson, J.L.; Boutry, S.; Barber, P.A. Reduced blood brain barrier breakdown in P-selectin deficient mice following transient ischemic stroke: A future therapeutic target for treatment of stroke. BMC. Neurosci. 2010, 11, 12.
[91]  Benaron, D.A.; Stevenson, D.K. Optical time-of-flight and absorbance imaging of biologic media. Science 1993, 259, 1463–1466.
[92]  Barber, P.A.; Rushforth, D.; Agrawal, S.; Tuor, U.I. Infrared optical imaging of matrix metalloproteinases (MMPs) up regulation following ischemia reperfusion is ameliorated by hypothermia. BMC Neurosci. 2012, 13, 76.
[93]  Johnson, G.A.; Benveniste, H.; Black, R.D.; Hedlund, L.W.; Maronpot, R.R.; Smith, B.R. Histology by magnetic resonance microscopy. Magn. Reson. Quart. 1993, 9, 1–30.
[94]  Weinmann, H.J.; Ebert, W.; Misselwitz, B.; Schmitt-Willich, H. Tissue-specific MR contrast agents. Eur. J. Radiol. 2003, 46, 33–44.
[95]  Bulte, J.W.; Brooks, R.A.; Moskowitz, B.M.; Bryant, L.H., Jr.; Frank, J.A. T1 and T2 relaxometry of monocrystalline iron oxide nanoparticles (MION-46L): Theory and experiment. Acad. Radiol. 1998, S137–S140.
[96]  Bulte, J.W.; Frank, J.A. Imaging macrophage activity in the brain by using ultrasmall particles of iron oxide. AJNR Amer. J. Neuroradiol. 2000, 21, 1767–1768.
[97]  Kassner, A.; Mandell, D.M.; Mikulis, D.J. Meassuring permeability in acute ischemic stroke. Neuroimag. Clin. North Amer. 2011, 21, 315–325.
[98]  Jacobs, M.A.; Knight, R.A.; Windham, J.P.; Zhang, Z.G.; Soltanian-Zadeh, H.; Goussev, A.V.; Peck, D.J.; Chopp, M. Identification of cerebral ischemic lesions in rat using Eigenimage filtered magnetic resonance imaging. Brain Res 1999, 837, 83–94.
[99]  Merten, C.L.; Knitelius, H.O.; Assheuer, J.; Bergmann-Kurz, B.; Hedde, J.P.; Bewermeyer, H. MRI of acute cerebral infarcts, increased contrast enhancement with continuous infusion of gadolinium. Neuroradiology 1999, 41, 242–248.
[100]  Patlak, C.S.; Blasberg, R.G.; Fenstermacher, J.D. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J. Cereb. Blood Flow Metab 1983, 3, 1–7.
[101]  Aviv, R.I.; d'Esterre, CD.; Murphy, B.D.; Hopyan, J.J.; Buck, B.; Mallia, G.; Li, V.; Zhang, L.; Symons, S.P.; Lee, T.Y. Hemorrhagic transformation of ischemic stroke: prediction with CT perfusion. Radiology 2009, 250, 867–877.
[102]  Knight, R.A.; Barker, P.B.; Fagan, S.C.; Li, Y.; Jacobs, M.A.; Welch, K.M. Prediction of impending hemorrhagic transformation in ischemic stroke using magnetic resonance imaging in rats. Stroke 1998, 29, 144–151.
[103]  Knight, R.A.; Nagesh, V.; Nagaraja, T.N.; Ewing, J.R.; Whitton, P.A.; Bershad, E.; Fagan, S.C.; Fenstermacher, J.D. Acute blood-brain barrier opening in experimentally induced focal cerebral ischemia is preferentially identified by quantitative magnetization transfer imaging. Magn. Reson. Med. 2005, 54, 822–832.
[104]  Baron, J.C.; Vonkummer, R.; Delzoppo, G.J. Treatment of acute ischemic stroke: Challenging the concept of a rigid and universal time window. Stroke 1995, 26, 2219–2221.
[105]  Barber, P.A.; Wechsler, L.R. The ischemic penumbra: From celestial body to imaging technology. Neurology 2010, 75, 844–845.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133