全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

A Potentiometric Flow Biosensor Based on Ammonia-Oxidizing Bacteria for the Detection of Toxicity in Water

DOI: 10.3390/s130606936

Keywords: potentiometry, flow biosensors, ion-selective electrodes, toxicity, Nitrosomonas europaea

Full-Text   Cite this paper   Add to My Lib

Abstract:

A flow biosensor for the detection of toxicity in water using the ammonia-oxidizing bacterium (AOB) Nitrosomonas europaea as a bioreceptor and a polymeric membrane ammonium-selective electrode as a transducer is described. The system is based on the inhibition effects of toxicants on the activity of AOB, which can be evaluated by measuring the ammonium consumption rates with the ammonium-selective membrane electrode. The AOB cells are immobilized on polyethersulfone membranes packed in a holder, while the membrane electrode is placed downstream in the flow cell. Two specific inhibitors of the ammonia oxidation?allylthiourea and thioacetamide?have been tested. The IC 50 values defined as the concentration of an inhibitor causing a 50% reduction in the ammonia oxidation activity have been measured as 0.17 μM and 0.46 μM for allylthiourea and thioacetamide, respectively. The proposed sensor offers advantages of simplicity, speed and high sensitivity for measuring toxicity in water.

References

[1]  Eltzov, E.; Marks, R.S. Whole-cell aquatic biosensors. Anal. Bioanal. Chem. 2011, 400, 895–913.
[2]  Lagarde, F.; Jaffrezic-Renault, N. Cell-based electrochemical biosensors for water quality assessment. Anal. Bioanal. Chem. 2011, 400, 947–964.
[3]  Pasco, N.F.; Weld, R.J.; Hay, J.M.; Gooneratne, R. Development and applications of whole cell biosensors for ecotoxicity testing. Anal. Bioanal. Chem. 2011, 400, 931–945.
[4]  Tothill, I.E.; Turner, A.P.F. Developments in bioassay methods for toxicity testing in water treatment. TrAC Trends Anal. Chem. 1996, 15, 178–188.
[5]  Mishra, S.; Barik, S.K.; Ayyappan, S.; Mohapatra, B.C. Fish bioassays for evaluation of raw and bioremediated dairy effluent. Bioresour. Technol. 2000, 72, 213–218.
[6]  Moreira-Santos, M.; Soares, A.; Ribeiro, R. An in situ bioassay for freshwater environments with the microalga pseudokirchneriella subcapitata. Ecotox. Environ. Safe. 2004, 59, 164–173.
[7]  Belkin, S. Microbial whole-cell sensing systems of environmental pollutants. Curr. Opin. Microbiol. 2003, 6, 206–212.
[8]  Sayavedra-Soto, L.A.; Gvakharia, B.; Bottomley, P.J.; Arp, D.J.; Dolan, M.E. Nitrification and degradation of halogenated hydrocarbons-a tenuous balance for ammonia-oxidizing bacteria. Appl. Microbiol. Biot. 2010, 86, 435–444.
[9]  Gernaey, K.; Verschuere, L.; Luyten, L.; Verstraete, W. Fast and sensitive acute toxicity detection with an enrichment nitrifying culture. Water Environ. Res. 1997, 69, 1163–1169.
[10]  Stein, L.Y.; Arp, D.J. Loss of ammonia monooxygenase activity in nitrosomonas europaea upon exposure to nitrite. Appl. Environ. Microb. 1998, 64, 4098–4102.
[11]  Konig, A.; Riedel, K.; Metzger, J.W. A microbial sensor for detecting inhibitors of nitrification in wastewater. Biosens. Bioelectron. 1998, 13, 869–874.
[12]  Jahng, D.; Cui, R.; Chung, W.J. A rapid and simple respirometric biosensor with immobilized cells of nitrosomonas europaea for detecting inhibitors of ammonia oxidation. Biosens. Bioelectron. 2005, 20, 1788–1795.
[13]  Jonsson, K.; Aspichueta, E.; de la Sota, A.; Jansen, J.L. Evaluation of nitrification-inhibition measurements. Water Sci. Technol. 2001, 43, 201–208.
[14]  Radniecki, T.S.; Gilroy, C.A.; Semprini, L. Linking ne1545 gene expression with cell volume changes in nitrosomonas europaea cells exposed to aromatic hydrocarbons. Chemosphere 2011, 82, 514–520.
[15]  Gunsch, C.K.; Wang, S.Y. Effects of selected pharmaceutically active compounds on the ammonia oxidizing bacterium nitrosomonas europaea. Chemosphere 2011, 82, 565–572.
[16]  Gernaey, K.; Vanderhasselt, A.A.; Bogaert, H.; Vanrolleghem, P.; Verstraete, W. Sensors to monitor biological nitrogen removal and activated sludge settling. J. Microbiol. Meth. 1998, 32, 193–204.
[17]  De Marco, R.; Clarke, G.; Pejcic, B. Ion-selective electrode potentiometry in environmental analysis. Electroanalysis 2007, 19, 1987–2001.
[18]  Qin, W.; Liang, R.; Fu, X.; Wang, Q.; Yin, T.; Song, W. Trace-level potentiometric detection in the presence of a high electrolyte background. Anal. Chem. 2012, 84, 10509–10513.
[19]  Qin, W.; Zhang, Z.; Peng, Y.; Li, B. Plant tissue-based chemiluminescence flow biosensor for oxalate. Anal. Commun. 1999, 36, 337–339.
[20]  Qin, W.; Zwickl, T.; Pretsch, E. Improved detection limits and unbiased selectivity coefficients obtained by using ion-exchange resins in the inner reference solution of ion selective polymeric membrane electrodes. Anal. Chem. 2000, 72, 3236–3240.
[21]  Iizumi, T.; Mizumoto, M.; Nakamura, K. A bioluminescence assay using nitrosomonas europaeafor rapid and sensitive detection of nitrification inhibitors. Appl. Environ. Microb. 1998, 64, 3656–3662.
[22]  Utgikar, V.P.; Tabak, H.H.; Haines, J.R.; Govind, R. Quantification of toxic and inhibitory impact of copper and zinc on mixed cultures of sulfate-reducing bacteria. Biotechnol. Bioeng. 2003, 82, 306–312.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133