全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Further In-vitro Characterization of an Implantable Biosensor for Ethanol Monitoring in the Brain

DOI: 10.3390/s130709522

Keywords: ethanol biosensor, oxygen dependence, pH dependence, implantable biosensor

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ethyl alcohol may be considered one of the most widespread central nervous system (CNS) depressants in Western countries. Because of its toxicological and neurobiological implications, the detection of ethanol in brain extracellular fluid (ECF) is of great importance. In a previous study, we described the development and characterization of an implantable biosensor successfully used for the real-time detection of ethanol in the brain of freely-moving rats. The implanted biosensor, integrated in a low-cost telemetry system, was demonstrated to be a reliable device for the short-time monitoring of exogenous ethanol in brain ECF. In this paper we describe a further in-vitro characterization of the above-mentioned biosensor in terms of oxygen, pH and temperature dependence in order to complete its validation. With the aim of enhancing ethanol biosensor performance, different enzyme loadings were investigated in terms of apparent ethanol Michaelis-Menten kinetic parameters, viz. I MAX, K M and linear region slope, as well as ascorbic acid interference shielding. The responses of biosensors were studied over a period of 28 days. The overall findings of the present study confirm the original biosensor configuration to be the best of those investigated for in-vivo applications up to one week after implantation.

References

[1]  Gonzales, R.A.; McNabb, J.; Yim, H.J.; Ripley, T.; Bungay, P.M. Quantitative microdialysis of ethanol in rat striatum. Alcohol. Clin. Exp. Res. 1998, 22, 858–867, doi:10.1111/j.1530-0277.1998.tb03880.x. 9660313
[2]  Jamal, M.; Ameno, K.; Kumihashi, M.; Ameno, S.; Kubota, T.; Wang, W.; Ijiri, I. Microdialysis for the determination of acetaldehyde and ethanol concentrations in the striatum of freely moving rats. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2003, 798, 155–158, doi:10.1016/j.jchromb.2003.09.015.
[3]  Yoshimoto, K.; Komura, S. Monitoring of ethanol levels in the rat nucleus accumbens by brain microdialysis. Alcohol Alcohol. 1993, 28, 171–174. 8517887
[4]  Adalsteinsson, E.; Sullivan, E.V.; Mayer, D.; Pfefferbaum, A. In vivo quantification of ethanol kinetics in rat brain. Neuropsychopharmacology 2006, 31, 2683–2691, doi:10.1038/sj.npp.1301023. 16407891
[5]  Rocchitta, G.; Secchi, O.; Alvau, M.D.; Migheli, R.; Calia, G.; Bazzu, G.; Farina, D.; Desole, M.S.; O′Neill, R.D.; Serra, P.A. Development and characterization of an implantable biosensor for telemetric monitoring of ethanol in the brain of freely moving rats. Anal. Chem. 2012, 84, 7072–7079, doi:10.1021/ac301253h. 22823474
[6]  McMahon, C.P.; Rocchitta, G.; Kirwan, S.M.; Killoran, S.J.; Serra, P.A.; Lowry, J.P.; O′Neill, R.D. Oxygen tolerance of an implantable polymer/enzyme composite glutamate biosensor displaying polycation-enhanced substrate sensitivity. Biosens. Bioelectron. 2007, 22, 1466–1473, doi:10.1016/j.bios.2006.06.027. 16887344
[7]  Clark, L.C., Jr.; Misrahy, G.; Fox, R.P. Chronically implanted polarographic electrodes. J. Appl. Physiol. 1958, 13, 85–91. 13563348
[8]  Bolger, F.B.; Lowry, J.P. Brain tissue oxygen: In vivo monitoring with carbon paste electrodes. Sensors 2005, 5, 473–487, doi:10.3390/s5110473.
[9]  Dixon, B.M.; Lowry, J.P.; O′Neill, R.D. Characterization in vitro and in vivo of the oxygen dependence of an enzyme/polymer biosensor for monitoring brain glucose. J. Neurosci. Meth. 2002, 119, 135–142, doi:10.1016/S0165-0270(02)00170-X.
[10]  McMahon, C.P.; O′Neill, R.D. Polymer-enzyme composite biosensor with high glutamate sensitivity and low oxygen dependence. Anal. Chem. 2005, 77, 1196–1199, doi:10.1021/ac048686r. 15859007
[11]  McMahon, C.P.; Killoran, S.J.; O′Neill, R.D. Design variations of a polymer-enzyme composite biosensor for glucose: Enhanced analyte sensitivity without increased oxygen dependence. J. Electroanal. Chem. 2005, 580, 193–202, doi:10.1016/j.jelechem.2005.03.026.
[12]  Kirwan, S.M.; Rocchitta, G.; McMahon, C.P.; Craig, J.D.; Killoran, S.J.; O′Brien, K.B.; Serra, P.A.; Lowry, J.P.; O′Neill, R.D. Modifications of poly(o-phenylenediamine) permselective layer on Pt-Ir for biosensor application in neurochemical monitoring. Sensors 2007, 7, 420–437, doi:10.3390/s7040420.
[13]  Calia, G.; Rocchitta, G.; Migheli, R.; Puggioni, G.; Spissu, Y.; Bazzu, G.; Mazzarello, V.; Lowry, J.P.; O′Neill, R.D.; Desole, M.S.; et al. Biotelemetric monitoring of brain neurochemistry in conscious rats using microsensors and biosensors. Sensors 2009, 9, 2511–2522, doi:10.3390/s90402511. 22574029
[14]  Bazzu, G.; Puggioni, G.G.; Dedola, S.; Calia, G.; Rocchitta, G.; Migheli, R.; Desole, M.S.; Lowry, J.P.; O′Neill, R.D.; Serra, P.A. Real-time monitoring of brain tissue oxygen using a miniaturized biotelemetric device implanted in freely moving rats. Anal. Chem. 2009, 81, 3911–3918, doi:10.1021/ac900162c. 19371060
[15]  Migheli, R.; Puggioni, G.; Dedola, S.; Rocchitta, G.; Calia, G.; Bazzu, G.; Esposito, G.; Lowry, J.P.; O′Neill, R.D.; Desole, M.S.; et al. Novel integrated microdialysis-amperometric system for in vitro detection of dopamine secreted from PC12 cells: Design, construction, and validation. Anal. Biochem. 2008, 380, 323–330, doi:10.1016/j.ab.2008.05.050. 18577368
[16]  Barsan, M.M.; Brett, C.M. An alcohol oxidase biosensor using PNR redox mediator at carbon film electrodes. Talanta 2008, 74, 1505–1510, doi:10.1016/j.talanta.2007.09.027. 18371810
[17]  Ryan, M.R.; Lowry, J.P.; O′Neill, R.D. Biosensor for neurotransmitter L-glutamic acid designed for efficient use of L-glutamate oxidase and effective rejection of interference. Analyst 1997, 112, 1419–1424.
[18]  ICH Q2 (R1). Validation of Analytical Procedures: Text and Methodology. Proceedings of International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use, Geneva, Switzerland; 2005; pp. 11–12.
[19]  Kato, N.; Omori, Y.; Tani, Y.; Ogata, K. Alcohol oxidases of Kloeckera sp. and Hansenula polymorpha. Catalytic properties and subunit structures. Eur. J. Biochem. 1976, 64, 341–350, doi:10.1111/j.1432-1033.1976.tb10307.x. 6273
[20]  Rothwell, S.A.; Killoran, S.J.; O′Neill, R.D. Enzyme immobilization strategies and electropolymerization conditions to control sensitivity and selectivity parameters of a polymer-enzyme composite glucose biosensor. Sensors 2010, 10, 6439–6462, doi:10.3390/s100706439. 22163559
[21]  O′Neill, R.D.; Lowry, J.P.; Rocchitta, G.; McMahon, C.P.; Serra, P.A. Designing sensitive and selective polymer/enzyme composite biosensors for brain monitoring in vivo. TrAC Trends Anal. Chem. 2008, 27, 78–88, doi:10.1016/j.trac.2007.11.008.
[22]  McMahon, C.P.; Rocchitta, G.; Serra, P.A.; Kirwan, S.M.; Lowry, J.P.; O′Neill, R.D. The efficiency of immobilised glutamate oxidase decreases with surface enzyme loading: An electrostatic effect, and reversal by a polycation significantly enhances biosensor sensitivity. Analyst 2006, 131, 68–72, doi:10.1039/b511643k. 16365665
[23]  Moran, L.A.; Perry, M.; Horton, R.; Scrimgeour, G.; Rawn, D. Principles of Biochemistry, 4th ed. ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2005.
[24]  Zauner, A.; Bullock, R.; Di, X.; Young, H.F. Brain oxygen, CO2, pH, and temperature monitoring: Evaluation in the feline brain. Neurosurgery 1995, 37, 1168–1176, doi:10.1227/00006123-199512000-00017. 8584158
[25]  Murr, R.; Berger, S.; Schuerer, L.; Peter, K.; Baethmann, A. A novel, remote-controlled suspension device for brain tissue PO2 measurements with multiwire surface electrodes. Pflugers Arch. 1994, 426, 348–350, doi:10.1007/BF00374792. 8183646
[26]  Nair, P.K.; Buerk, D.G.; Halsey, J.H., Jr. Comparisons of oxygen metabolism and tissue PO2 in cortex and hippocampus of gerbil brain. Stroke 1987, 18, 616–622, doi:10.1161/01.STR.18.3.616. 3590255

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133