We report on photo-detectors consisting of an optical waveguide that incorporates a resonant tunneling diode (RTD). Operating at wavelengths around 1.55 μm in the optical communications C band we achieve maximum sensitivities of around 0.29 A/W which is dependent on the bias voltage. This is due to the nature of RTD nonlinear current-voltage characteristic that has a negative differential resistance (NDR) region. The resonant tunneling diode photo-detector (RTD-PD) can be operated in either non-oscillating or oscillating regimes depending on the bias voltage quiescent point. The oscillating regime is apparent when the RTD-PD is biased in the NDR region giving rise to electrical gain and microwave self-sustained oscillations Taking advantage of the RTD’s NDR distinctive characteristics, we demonstrate efficient detection of gigahertz (GHz) modulated optical carriers and optical control of a RTD GHz oscillator. RTD-PD based devices can have applications in generation and optical control of GHz low-phase noise oscillators, clock recovery systems, and fiber optic enabled radio frequency communication systems.
References
[1]
Sackinger, E. Broadband Circuits for Optical Fiber Communication; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; pp. 25–40.
[2]
Granastein, V. L. Physical Principles of Wireless Communications; CRC Press: Boca Raton, FL, USA, 2012; pp. 171–201.
[3]
Sauer, M.; Kobyakov, A.; George, J. Radio over fiber for picocellular network architectures. J. Lightware Technol. 2007, 25, 3301–3320.
[4]
Gomes, N.J.; Morant, M.; Alphones, A.; Cabon, B.; Mitchell, J.E.; Lethien, C.; Csornyei, M.; Stohr, A.; Iezekiel, S. Radio-over-fiber transport for the support of wireless broadband services. J. Opt. Netw. 2009, 8, 156–178.
[5]
Klemm, M.; Leendertz, J.A.; Gibbons, D.; Craddock, I.J.; Preece, A.; Benjamin, R. Microwave radar-based breast cancer detection: Imaging in inhomogeneous breast phantoms. IEEE Ant. Wirel. Propag. Lett. 2009, 8, 1349–1352.
[6]
Guetin, P. Interaction between a light beam and a Gunn oscillator near the fundamental edge of GaAs. J. Appl. Phys. 1969, 40, 4114–4122.
[7]
Kiehl, R.A. Behavior and dynamics of optically controlled TRAPATT oscillators. IEEE Trans. Electron Devices 1978, 25, 703–710.
[8]
Yen, H.W.; Barnoski, M.K.; Hunsperger, R.G.; Melville, R.T. Switching of GaAs IMPATT diode oscillator by optical illumination. Appl. Phys. Lett. 1977, 31, 120–122.
[9]
Lee, K.H.; Kim, J.Y.; Choi, W.Y.; Kamitsuna, H.; Ida, M.; Kurishima, K. Low-cost optoelectronic self-injection-locked oscillators. IEEE Photonic Technol. Lett. 2008, 20, 1151–1153.
[10]
Shumakher, E.; Magrisso, T.; Kraus, S.; Elias, D.C.; Gavrilov, A.; Cohen, S.; Eisenstein, G.; Ritter, D. An InP HBT-based oscillator monolithically integrated with a photodiode. J. Lightwave Technol. 2008, 26, 2679–2683.
Ramond, T.; Hollberg, L.; Juodawlkis, P.W.; Calawa, S.D. Low noise optical injection locking of a resonant tunneling diode to a stable optical frequency comb. Appl. Phys. Lett. 2007, 90, 171124.
[13]
Romeira, B.; Figueiredo, J.M.L.; Ironside, C.N.; Kelly, A.E.; Slight, T.J. Optical control of a resonant tunneling diode microwave-photonic oscillator. IEEE Photonic Technol. Lett. 2010, 22, 1610–1612.
[14]
Romeira, B.; Seunarine, K.; Ironside, C.N.; Kelly, A.E.; Figueiredo, J.M.L. A self-synchronized optoelectronic oscillator based on an RTD photo-detector and a laser diode. IEEE Photonic Technol. Lett. 2011, 23, 1148–1150.
Romeira, B.; Figueiredo, J.M.L.; Slight, T.J.; Wang, L.; Wasige, E.; Ironside, C.N.; Kelly, A.E.; Green, R. Nonlinear dynamics of resonant tunneling optoelectronic circuits for wireless/optical Interfaces. IEEE J. Quantum Electron. 2009, 45, 1436–1445.
[18]
Wang, J.; Wang, L.; Li, C.; Romeira, B.; Wasige, E. 28 GHz MMIC resonant tunneling diode oscillator of around 1 mW output power. Electron. Lett. 2013, 49, 816–819.
[19]
Ishigaki, K.; Shiraishi, M.; Suzuki, S.; Asada, M.; Nishiyama, N.; Arai, S. Direct intensity modulation and wireless data transmission characteristics of terahertz-oscillating resonant tunnelling diodes. Electron. Lett. 2012, 48, 482–483.
Fidaner, O.; Okyay, A.K.; Roth, J.E.; Schaevitz, R.K.; Yu-Hsuan, Kuo; Saraswat, K.C.; Harris, James S; Miller, D.A.B. Ge–SiGe quantum-well waveguide photodetectors on silicon for the near-infrared. IEEE Photonic Technol. Lett. 2007, 19, 1631–1633.
[27]
Figueiredo, J.M.L.; Ironside, C.N.; Stanley, C.R. Electric field switching in a resonant tunneling diode electroabsorption modulator. IEEE J. Quantum Electron. 2001, 37, 1547–1552.
[28]
Chuang, S. L. Physics of Optoelectronic Devices; Wiley: NY, USA, 1995.
[29]
Alkeev, N.V.; Lyubchenko, V.E.; Ironside, C.N.; Figueiredo, J.M.L.; Stanley, C.R. Super high-frequency characteristics of optical modulators on the basis of InGaAlAs resonance-tunnel heterostructures. J. Commun. Technol. Electron. 2000, 45, 911–914.