In previous work, the novel heat-transfer method (HTM) for the detection of small molecules with Molecularly Imprinted Polymers (MIP)-type receptors was presented. In this study we focus on optimization of this sensor performance, with as final aim to lower the detection limit by reducing the noise level. It was determined that the noise originates foremost from the power supply, which can be controlled by varying the PID parameters. Therefore, the effect of the individual parameters was evaluated by tuning P, I and D separately at a temperature of 37 °C, giving a first indication of the optimal configuration. Next, a temperature profile was programmed and the standard deviation of the heat-transfer resistance over the entire regime was studied for a set of parameters. The optimal configuration, P1-I6-D0, reduced the noise level with nearly a factor of three compared to the original parameters of P10-I5-D0. With the optimized settings, the detection of L-nicotine in buffer solutions was studied and the detection limit improved significantly from 100 nM to 35 nM. Summarizing, optimization of the PID parameters and thereby improving the detection limit is a key parameter for first applications of the HTM-method for MIP receptors in analytical research.
Poma, A.; Whitcombe, M.; Piletsky, S. Plastic Antibodies. In Designing Receptors for the Next Generation of Biosensors; Piletsky, S.A., Whitcombe, M.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 105–129.
[3]
Dickert, F.L.; Lieberzeit, P.; Tortschanoff, M. Molecular imprints as artificial antibodies: A new generation of chemical sensors. Sens. Actuators B-Chem. 2000, 65, 186–189.
[4]
Arshady, R.; Mosbach, K. Synthesis of substrate-selective polymers by host-guest polymerization. Chem. Phys. 1981, 182, 687–692.
[5]
Haupt, K. Imprinted polymers—Taylor-made mimics of antibodies and receptors. Chem. Commun 2003, 2, 171–178.
[6]
O'Mahony, J.; Molinelli, A.; Nolan, K.; Smyth, M.R.; Mizaikoff, B. Anatomy of a successful imprint: Analysing the recognition mechanisms of a molecularly imprinted polymer for quercetin. Biosens. Bioelectron 2006, 21, 1383–1392.
[7]
Benito-Pena, E.; Urraca, J.L.; Sellergren, B.; Moreno-Bondi, M.C. Solid-phase extraction of fluoroquinolones from aqueous samples using a watercompatible stochiometrically imprinted polymer. J. Chromatogr. A 2008, 1208, 62–70.
[8]
Thoelen, R.; Alenus, J.; Bongaers, E.; Weusterraed, A.; Thoelen, R.; Duchateau, J.; Lutsen, L.; Vanderzande, D.; Wagner, P.; Cleij, T.J. A MIP-based impedimetric sensor for the detection of low-MW molecules. Biosens. Bioelectron 2008, 23, 913–918.
[9]
Ye, L.; Haupt, K. Molecularly imprinted polymers as antibody and receptor mimics assays. Anal. Bioanal. Chem. 2004, 378, 1887–1897.
[10]
Sellergren, B.; Allender, C.J. Molecularly imprinted polymers: A bridge to advanced drug delivery. Advan. Drug Delivery Rev. 2005, 57, 1733–1741.
[11]
Reimhult, K.; Yoshimatsu, K.; Risveden, K.; Chen, S.; Krozer, A. Characterization of QCM sensor surfaces coated with molecularly imprinted nanoparticles. Biosens. Bioelectron 2008, 23, 1908–1914.
Dickert, F.L.; Halikias, K.; Hayden, O.; Piu, L.; Sikorski, R. Sensors based on fingerprints of neutral and ionic analytes in polymeric materials. Sens. Actuators B-Chem. 2001, 76, 295–298.
[14]
Dickert, F.L.; Hayden, O. Molecular imprinting in chemical sensing. TrAC-Trend. Anal. Chem. 1999, 18, 192–199.
[15]
Piletsky, S.A.; Turner, A.P.F. Electrochemical sensors based on molecularly imprinted polymers. Electroanalysis 2002, 13, 317–323.
Peeters, M.; Troost, F.J.; Mingels, R.H.G.; Welsch, T.; van Grinsven, B.; Vranken, T.; Ingebrandt, S.; Thoelen, R.; Cleij, T.J.; Wagner, P. Impedimetric detection of histamine in bowel fluids using synthetic receptors with pH-optimized binding characteristics. Anal Chem. 2013, 85, 1475–1483.
[18]
Ramanavicius, A.; Finkelsteinas, A.; Cesiulis, H.; Ramanaviciene, A. Electrochemical impedance spectroscopy of polypyrrole based electrochemical immunosensor. Bioelectrochemistry 2010, 79, 11–16.
[19]
Ramanavi ?ius, A.; Ramanavi?ien?, A.; Malinauskas, A. Electrochemical sensors based on conducting polymer—Polypyrrole. Electrochim. Acta 2006, 51, 6025–6037.
[20]
Van Grinsven, B.; Bon, N.V.; Strauven, H.; Grieten, L.; Murib, M.; Monroy, K.L.J.; Janssens, S.D.; Haenen, K.; Sch?ning, M.J.; Vermeeren, V.; et al. Heat-transfer resistance at solid-liquid interfaces: A tool for the detection of single nucleotide polymorphisms in DNA. ACS NANO 2012, 6, 2712–2721.
[21]
Peeters, M.; Csipai, P.; Geerets, B.; Weustenraed, A.; van Grinsven, B.; Thoelen, R.; Gruber, J.; De Ceuninck, W.; Cleij, T.J.; Troost, F.J.; et al. Heat-transfer based detection of L-nicotine, histamine, and serotonin using molecularly imprinted polymers as biomimetic receptors. Anal. Bioanal. Chem. 2013, doi:10.1007/s00216-013-7024-9.
[22]
?str?m, K.J.; Murray, R.M. Feedback Systems: An Introduction for Scientists and Engineers; Princeton University Press: Princeton, NJ, USA, 2008.
[23]
?str?m, K.J. PID Control. In Control System Design; University of California Press: Santa Barbara, CA, USA, 2002; pp. 216–251.
[24]
Russels, M.A.; Sutton, S.R.; Feyerabend, C.; Cole, P.V.; Salojee, Y. Nicotine chewing gum as a substitute for smoking. Brit. Med. J. 1976, 6017, 1043–1046.
[25]
Dome, P.; Lazary, J.; Kapalos, M.P.; Rihmer, Z. Smoking, nicotine and neuropsychiatric disorders. Neurosci. Biobehav. Rev. 2010, 34, 295–342.
[26]
Wymenga, A.N.M.; van der Graaf, W.T.; Kema, I.P.; Smit Sibinga, C.T.; Vries, E.G.; Mulder, N.H. Effects of peripheral stem-cell or bone-marrow reinfusion on peripheral serotonin metabolism. Lancet 1999, 353, 293–294.
[27]
Horemans, F.; Alenus, J.; Bongaers, E.; Weustenraed, A.; Thoelen, R.; Duchateau, J.; Lutsen, L.; Vanderzande, D.; Wagner, P.; Cleij, T.J. MIP-based sensor platforms for the detection of histamine in the nano- and micromolar range in aqueous media. Sens. Actuators B-Chem. 2010, 148, 392–398.
[28]
Van Grinsven, B.; Vanden Bon, N.; Grieten, L.; MuriB, M.; Janssens, S.D.; Haenen, K.; Schneider, E.; Ingebrandt, S.; Sch?ning, M.J.; Vermeeren, V.; et al. Rapid assessment of the stability of DNA duplexes by impedimetric real-time monitoring of chemically induced denaturation. Lab Chip. 2011, 11, 1656–1663.
[29]
Louwet, D.; Vanderzande, J.; Gelan, A. A general synthetic route to high-molecular-weight poly(p-xylene)-derivatives—A new route to poly(p-phenylene) vinylene. Synthet. Metal. 1995, 69, 509–510.