全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Ultra-Precision Measurement and Control of Angle Motion in Piezo-Based Platforms Using Strain Gauge Sensors and a Robust Composite Controller

DOI: 10.3390/s130709070

Keywords: piezo-based platform, ultra-precision angle motion, robust composite control

Full-Text   Cite this paper   Add to My Lib

Abstract:

The measurement and control strategy of a piezo-based platform by using strain gauge sensors (SGS) and a robust composite controller is investigated in this paper. First, the experimental setup is constructed by using a piezo-based platform, SGS sensors, an AD5435 platform and two voltage amplifiers. Then, the measurement strategy to measure the tip/tilt angles accurately in the order of sub-μrad is presented. A comprehensive composite control strategy design to enhance the tracking accuracy with a novel driving principle is also proposed. Finally, an experiment is presented to validate the measurement and control strategy. The experimental results demonstrate that the proposed measurement and control strategy provides accurate angle motion with a root mean square (RMS) error of 0.21 μrad, which is approximately equal to the noise level.

References

[1]  Hemmati, H.; Biswas, A.; Djordjevic, I. Deep-space optical communications: Future perspectives and applications. Proc. IEEE 2011, 99, 2020–2039.
[2]  Roberts, W.; Jeffrey, R. Compact deep-space optical communications transceiver. Proc. SPIE 2009, 7199, 71990L.
[3]  Brugarolas, P.; Alexander, J.; Trauger, J.; Moody, D.; Egerman, R.; Vallone, P.; Elias, J.; Hejal, R.; Camelo, V.; Bronowicki, A.; et al. ACCESS pointing control system. Proc. SPIE 2010, 7731, 77314V.
[4]  Kendrick, S.; Stober, J.; Gravseth, I. Pointing and image stability for spaceborne sensors-from cometimpactors to observations of extrasolar planets. Proc. SPIE 2006, 6265, 62652V.
[5]  Ladani, L.; Nelson, S. A Novel piezo-actuator-sensor micromachine for mechanical characterization of micro-specimens. Micromachines 2010, 1, 129–152.
[6]  Yang, Y.; Divsholi, B.; Soh, C. A reusable PZT transducer for monitoring initial hydration and structural health of concrete. Sensors 2010, 10, 5193–5208.
[7]  Jakiela, S.; Zaslona, J.; Michalski, J. Square wave driver for piezoceramic actuators. Actuators 2012, 1, 12–20.
[8]  Anderson, H.; Sater, J. Smart structures product implementation award: A review of the first ten years. Proc. SPIE 2007, 6527, 652702.
[9]  Cobb, R.; Sullivan, J.; Das, A. Vibration isolation and suppression system for precision payloads in space. Smart Mater. Struct. 1999, 43, 798–812.
[10]  Neat, G.; Melody, J.; Lurie, J. Vibration attenuation approach for spaceborne optical interferometers. IEEE Trans. Control Syst. Technol. 1998, 6, 689–700.
[11]  Bronowicki, A.; Innis, J. A family of full spacecraft-to-payload isolators. Technol. Rev. J. 2005, 13, 21–41.
[12]  Huang, H.; Zhao, H.; Yang, Z.; Fan, Z.; Wan, S.; Shi, C.; Ma, Z. Design and analysis of a compact precision positioning platform integrating strain gauges and the piezoactuator. Sensors 2012, 12, 9697–9710.
[13]  Moheimani, S. Accurate fast nanopositioning with piezoelectric tube scanners: Emerging trends and future challenges. Rev. Sci. Instrum. 2008, 79, 0711011.
[14]  Ando, T.; Uchihashi, T.; Fukuma, T. High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes. Prog. Surf. Sci. 2008, 83, 337–437.
[15]  Xie, H.; Rakotondrabe, M.; Rgnier, S. Characterizing piezoscanner hysteresis and creep using optical levers and a reference nanopositioning stage. Rev. Sci. Instrum. 2009, 80, 046102.
[16]  Huang, D.; Xu, J.; Huynh, T. High performance tracking of piezoelectric positioning stage using current-cycle iterative learning control with gain scheduling. IEEE Trans. Ind. Electron. 2013, doi:10.1109/TIE.2013.2253071.
[17]  Yan, T.; Xu, X.; Han, J.; Lin, R.; Ju, B.; Li, Q. Optimization of sensing and feedback control for vibration/flutter of rotating disk by PZT actuators via air coupled pressure. Sensors 2011, 11, 3094–3116.
[18]  Song, G.; Zhao, J.; Zhou, X. Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model. IEEE/ASME Trans. Mechatron. 2005, 10, 198–209.
[19]  Huang, S.; Tan, K.; Lee, T. Adaptive sliding-Mode control of piezoelectric actuators. IEEE Trans. Ind. Electron. 2009, 56, 3514–3522.
[20]  Jin, T.; Takita, A.; Djamal, M.; Hou, W.; Jia, H.; Fujii, Y. A method for evaluating the electro-mechanical characteristics of piezoelectric actuators during motion. Sensors 2012, 12, 11559–1570.
[21]  Putra, A.; Ridge, K.; Huang, S.; Tan, K.; Panda, S. Design, modeling and control of piezoelectric actuators for intracytoplasmic sperm injection. IEEE Trans. Control Syst. Technol. 2007, 15, 879–890.
[22]  Huang, G.; Song, F.; Wang, X. Quantitative modeling of coupled piezo-elastodynamic behavior of piezoelectric actuators bonded to an elastic medium for structural health monitoring: A review. Sensors 2010, 10, 3681–3702.
[23]  Cao, Y.; Chen, X. State space system identification of 3-degree-of-freedom (DOF) piezo-actuator-driven stages with unknown configuration. Actuators 2013, 2, 1–18.
[24]  Skogestad, S.; Postlethwaite, I. Design and Analysis. In Multivariable Feedback Control; Wiley: New York, NY, USA, 2005; pp. 373–377.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133