全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Microarray Dot Electrodes Utilizing Dielectrophoresis for Cell Characterization

DOI: 10.3390/s130709029

Keywords: dielectrophoresis, Lab-on-a-Chip, dot electrode, BioMEMS, particle manipulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

During the last three decades; dielectrophoresis (DEP) has become a vital tool for cell manipulation and characterization due to its non-invasiveness. It is very useful in the trend towards point-of-care systems. Currently, most efforts are focused on using DEP in biomedical applications, such as the spatial manipulation of cells, the selective separation or enrichment of target cells, high-throughput molecular screening, biosensors and immunoassays. A significant amount of research on DEP has produced a wide range of microelectrode configurations. In this paper; we describe the microarray dot electrode, a promising electrode geometry to characterize and manipulate cells via DEP. The advantages offered by this type of microelectrode are also reviewed. The protocol for fabricating planar microelectrodes using photolithography is documented to demonstrate the fast and cost-effective fabrication process. Additionally; different state-of-the-art Lab-on-a-Chip (LOC) devices that have been proposed for DEP applications in the literature are reviewed. We also present our recently designed LOC device, which uses an improved microarray dot electrode configuration to address the challenges facing other devices. This type of LOC system has the capability to boost the implementation of DEP technology in practical settings such as clinical cell sorting, infection diagnosis, and enrichment of particle populations for drug development.

References

[1]  Ritzi-Lehnert, M. Development of chip-compatible sample preparation for diagnosis of infectious diseases. Expert Rev. Mol. Diagn. 2012, 12, 189–206, doi:10.1586/erm.11.98. 22369378
[2]  Haeberle, S.; Zengerle, R. Microfluidic platforms for lab-on-a-chip applications. Lab Chip 2007, 7, 1094–1110, doi:10.1039/b706364b. 17713606
[3]  Sin, M.; Gao, J.; Liao, J.; Wong, P. System integration—A major step toward lab on a chip. J. Biol. Eng. 2011, 5, 1–22, doi:10.1186/1754-1611-5-1. 21276219
[4]  Masuda, S.; Washizu, M.; Nanba, T. Novel method of cell fusion in field constriction area in fluid integration circuit. IEEE Trans. Indust. Appl. 1989, 25, 732–737, doi:10.1109/28.31255.
[5]  Gascoyne, P.R.C.; Xiao-Bo, W.; Ying, H.; Becker, F.F. Dielectrophoretic separation of cancer cells from blood. IEEE Trans. Indust. Appl. 1997, 33, 670–678, doi:10.1109/28.585856.
[6]  Gasperis, G.; Yang, J.; Becker, F.; Gascoyne, P.C.; Wang, X.-B. Microfluidic Cell Separation by 2-dimensional Dielectrophoresis. Biomed. Microdevices 1999, 2, 41–49, doi:10.1023/A:1009955200029.
[7]  Li, H.; Bashir, R. Dielectrophoretic separation and manipulation of live and heat-treated cells of Listeria on microfabricated devices with interdigitated electrodes. Sens. Actuators B: Chem. 2002, 86, 215–221, doi:10.1016/S0925-4005(02)00172-7.
[8]  Fatoyinbo, H.O.; Kadri, N.A.; Gould, D.H.; Hoettges, K.F.; Labeed, F.H. Real time cell electrophysiology using a multi channel dielectrophoretic dot microelectrode array. Electrophoresis 2011, 32, 2541–2549, doi:10.1002/elps.201100033. 21922496
[9]  Bousse, L.; Cohen, C.; Nikiforov, T.; Chow, A.; Kopf-Sill, A.R.; Dubrow, R.; Parce, J.W. Electrokinetically controlled microfluidic analysis systems. Annu. Rev. Biophys. Biomol. Struc. 2000, 29, 155–181, doi:10.1146/annurev.biophys.29.1.155.
[10]  Pohl, H.A. The motion and precipitation of suspensoids in divergent electric fields. J. Appl. Phys. 1951, 22, 869–871, doi:10.1063/1.1700065.
[11]  Pohl, H.A.; Hawk, I. Separation of living and dead cells by dielectrophoresis. Science 1966, 152, 647. 17779504
[12]  Gagnon, Z.R. Cellular dielectrophoresis: applications to the characterization, manipulation, separation and patterning of cells. Electrophoresis 2011, 32, 2466–2487, doi:10.1002/elps.201100060. 21922493
[13]  Voldman, J. Electrical forces for microscale cell manipulation. Annu. Rev. Biomed. Eng. 2006, 8, 425–454, doi:10.1146/annurev.bioeng.8.061505.095739. 16834563
[14]  Kadri, N.A. Development of Near Real-Time Assessment System for Cancer Cells. Ph.D. Thesis, University of Surrey, Guildford, Surrey, UK, 2011.
[15]  Archer, S.; Morgan, H.; Rixon, F.J. Electrorotation studies of baby hamster kidney fibroblasts infected with herpes simplex virus type 1. Biophys. J. 1999, 76, 2833–2842, doi:10.1016/S0006-3495(99)77437-0. 10233099
[16]  Green, N.; Morgan, H. Dielectrophoretic separation of nano-particles. J. Phys. D: Appl. Phys. 1999, 30, L41.
[17]  Hughes, M.P.; Morgan, H. Dielectrophoretic trapping of single sub-micrometre scale bioparticles. J. Phys. D: Appl. Phys. 1998, 31, 2205, doi:10.1088/0022-3727/31/17/020.
[18]  Morgan, H.; Hughes, M.P.; Green, N.G. Separation of submicron bioparticles by dielectrophoresis. Biophys. J. 1999, 77, 516, doi:10.1016/S0006-3495(99)76908-0. 10388776
[19]  Masuda, T.; Maruyama, H.; Honda, A.; Araf, F. Virus Enrichment for Single Virus Manipulation by Using 3D Insulator Based Dielectrophoresis. Proceedings of 11th IEEE Conference on Nanotechnology, Portland, OR, USA, 15–18 August 2011; pp. 241–244.
[20]  Nakano, A.; Ros, A. Protein dielectrophoresis: Advances, challenges and applications. Electrophoresis 2013, 34, 1085–1096, doi:10.1002/elps.201200482. 23400789
[21]  Clarke, R.W.; White, S.S.; Zhou, D.; Ying, L.; Klenerman, D. Trapping of Proteins under Physiological Conditions in a Nanopipette. Angew. Chemie 2005, 117, 3813–3816, doi:10.1002/ange.200500196.
[22]  Zheng, L.; Brody, J.P.; Burke, P.J. Electronic manipulation of DNA, proteins, and nanoparticles for potential circuit assembly. Biosens. Bioelectron. 2004, 20, 606–619, doi:10.1016/j.bios.2004.03.029. 15494246
[23]  Gascoyne, P.; Mahidol, C.; Ruchirawat, M.; Satayavivad, J.; Watcharasit, P.; Becker, F.F. Microsample preparation by dielectrophoresis: isolation of malaria. Lab Chip 2002, 2, 70–75, doi:10.1039/b110990c. 15100837
[24]  Markx, G.H.; Huang, Y.; Zhou, X.-F.; Pethig, R. Dielectrophoretic characterization and separation of micro-organisms. Microbiology 1994, 140, 585–591, doi:10.1099/00221287-140-3-585.
[25]  Suehiro, J.; Noutomi, D.; Shutou, M.; Hara, M. Selective detection of specific bacteria using dielectrophoretic impedance measurement method combined with an antigen–antibody reaction. J. Electrostat. 2003, 58, 229–246, doi:10.1016/S0304-3886(03)00062-7.
[26]  Hamada, R.; Takayama, H.; Shonishi, Y.; Mao, L.; Nakano, M.; Suehiro, J. A rapid bacteria detection technique utilizing impedance measurement combined with positive and negative dielectrophoresis. Sens. Actuators B: Chem. 2013, 181, 439–445, doi:10.1016/j.snb.2013.02.030.
[27]  Henning, A.; Bier, F.F.; H?lzel, R. Dielectrophoresis of DNA: Quantification by impedance measurements. Biomicrofluidics 2010, 4, 022803, doi:10.1063/1.3430550. 20697597
[28]  Gallo-Villanueva, R.C.; Rodríguez-López, C.E.; Díaz-de-la-Garza, R.I.; Reyes-Betanzo, C.; Lapizco-Encinas, B.H. DNA manipulation by means of insulator-based dielectrophoresis employing direct current electric fields. Electrophoresis 2009, 30, 4195–4205, doi:10.1002/elps.200900355. 20013902
[29]  Martinez-Duarte, R.; Camacho-Alanis, F.; Renaud, P.; Ros, A. Dielectrophoresis of lambda-DNA using 3D carbon electrodes. Electrophoresis 2013, 34, 1113–1122, doi:10.1002/elps.201200447. 23348619
[30]  Fatoyinbo, H.O.; Hughes, M.P.; Martin, S.P.; Pashby, P.; Labeed, F.H. Dielectrophoretic separation of Bacillus subtilis spores from environmental diesel particles. J. Environ. Monit. 2006, 9, 87–90. 17213947
[31]  Koklu, M.; Park, S.; Pillai, S.D.; Beskok, A. Negative dielectrophoretic capture of bacterial spores in food matrices. Biomicrofluidics 2010, 4, 034107, doi:10.1063/1.3479998. 20838479
[32]  Hübner, Y.; Hoettges, K.F.; Hughes, M.P. Water quality test based on dielectrophoretic measurements of fresh water algae Selenastrum capricornutum. J. Environ. Monit 2003, 5, 861–864, doi:10.1039/b309131g. 14710923
[33]  Song, Y.; Yang, J.; Shi, X.; Jiang, H.; Wu, Y.; Peng, R.; Wang, Q.; Gong, N.; Pan, X.; Sun, Y. DC dielectrophoresis separation of marine algae and particles in a microfluidic chip. Sci. Chin. Chem. 2012, 1–7.
[34]  Dalton, C.; Goater, A.; Drysdale, J.; Pethig, R. Parasite viability by electrorotation. Colloid Surface Physicochem. Eng. Aspect 2001, 195, 263–268, doi:10.1016/S0927-7757(01)00850-0.
[35]  Menachery, A.; Kremer, C.; Wong, P.E.; Carlsson, A.; Neale, S.L.; Barrett, M.P.; Cooper, J.M. Counterflow Dielectrophoresis for Trypanosome Enrichment and Detection in Blood. Scientific Reports 2; Nature Publishing Group: London, UK, 2012.
[36]  Pethig, R.; Talary, M.S. Dielectrophoretic detection of membrane morphology changes in Jurkat T-cells undergoing etoposide-induced apoptosis. IET Nanobiotechnol. 2007, 1, 2–9, doi:10.1049/iet-nbt:20060018. 17500582
[37]  Nikolic-Jaric, M.; Cabel, T.; Salimi, E.; Bhide, A.; Braasch, K.; Butler, M.; Bridges, G.E.; Thomson, D.J. Differential electronic detector to monitor apoptosis using dielectrophoresis-induced translation of flowing cells (dielectrophoresis cytometry). Biomicrofluidics 2013, 7, 024101, doi:10.1063/1.4793223.
[38]  Mernier, G.; Piacentini, N.; Tornay, R.; Buffi, N.; Renaud, P. Label-free Sorting and Counting of Yeast Cells for Viability Studies. Procedia Chem. 2009, 1, 385–388, doi:10.1016/j.proche.2009.07.096.
[39]  Mernier, G.; Piacentini, N.; Tornay, R.; Buffi, N.; Renaud, P. Cell viability assessment by flow cytometry using yeast as cell model. Sensor. Actuators B: Chem. 2011, 154, 160–163, doi:10.1016/j.snb.2009.11.066.
[40]  Young, C.-W.; Hsieh, J.-L.; Ay, C. Development of an Integrated Chip for Automatic Tracking and Positioning Manipulation for Single Cell Lysis. Sensors 2012, 12, 2400–2413, doi:10.3390/s120302400. 22736957
[41]  Chiou, C.-H.; Pan, J.-C.; Chien, L.-J.; Lin, Y.-Y.; Lin, J.-L. Characterization of Microparticle Separation Utilizing Electrokinesis within an Electrodeless Dielectrophoresis Chip. Sensors 2013, 13, 2763–2776. 23447009
[42]  Yunus, N.A.M.; Nili, H.; Green, N.G. Continuous separation of colloidal particles using dielectrophoresis. Electrophoresis 2013, 34, 969–978, doi:10.1002/elps.201200466. 23436439
[43]  Washizu, M.; Suzuki, S.; Kurosawa, O.; Nishizaka, T.; Shinohara, T. Molecular dielectrophoresis of biopolymers. IEEE Trans. Indust. Appl. 1994, 30, 835–843, doi:10.1109/28.297897.
[44]  Jaber, F.T.; Labeed, F.H.; Hughes, M.P. Action potential recording from dielectrophoretically positioned neurons inside micro-wells of a planar microelectrode array. J. Neurosci. Meth. 2009, 182, 225–235, doi:10.1016/j.jneumeth.2009.06.013.
[45]  Imasato, H.; Yamakawa, T.; Eguchi, M. Separation of Leukemia Cells from Blood by Employing Dielectrophoresis. Intell. Autom. Soft Comput. 2012, 18, 139–152, doi:10.1080/10798587.2008.10643232.
[46]  Patel, S.; Showers, D.; Vedantam, P.; Tzeng, T.-R.; Qian, S.; Xuan, X. Microfluidic separation of live and dead yeast cells using reservoir-based dielectrophoresis. Biomicrofluidics 2012, 6, 034102–034112, doi:10.1063/1.4732800.
[47]  Piacentini, N.; Mernier, G.; Tornay, R.; Renaud, P. Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation. Biomicrofluidics 2011, 5, 034122, doi:10.1063/1.3640045.
[48]  Chuang, C.-H.; Huang, Y.-W.; Wu, Y.-T. System-level biochip for impedance sensing and programmable manipulation of bladder cancer cells. Sensors 2011, 11, 11021–11035, doi:10.3390/s111111021. 22346685
[49]  Rosales-Cruzaley, E.; Cota-Elizondo, P.; Sánchez, D.; Lapizco-Encinas, B.H. Sperm cells manipulation employing dielectrophoresis. Bioprocess. Biosyst. Eng. 2012, 1–10.
[50]  Pethig, R.; Markx, G.H. Applications of dielectrophoresis in biotechnology. Trends Biotechnol. 1997, 15, 426–432, doi:10.1016/S0167-7799(97)01096-2. 9351287
[51]  Cao, J.; Cheng, P.; Hong, F. A numerical analysis of forces imposed on particles in conventional dielectrophoresis in microchannels with interdigitated electrodes. J. Electrostat. 2008, 66, 620–626, doi:10.1016/j.elstat.2008.09.003.
[52]  Lapizco-Encinas, B.H.; Davalos, R.V.; Simmons, B.A.; Cummings, E.B.; Fintschenko, Y. An insulator-based (electrodeless) dielectrophoretic concentrator for microbes in water. J. Microbiol. Meth. 2005, 62, 317–326, doi:10.1016/j.mimet.2005.04.027.
[53]  Chou, C.-F.; Tegenfeldt, J.O.; Bakajin, O.; Chan, S.S.; Cox, E.C.; Darnton, N.; Duke, T.; Austin, R.H. Electrodeless dielectrophoresis of single-and double-stranded DNA. Biophy. J. 2002, 83, 2170–2179, doi:10.1016/S0006-3495(02)73977-5.
[54]  Khoshmanesh, K.; Nahavandi, S.; Baratchi, S.; Mitchell, A.; Kalantar-zadeh, K. Dielectrophoretic platforms for bio-microfluidic systems. Biosen. Bioelectron. 2011, 26, 1800–1814, doi:10.1016/j.bios.2010.09.022.
[55]  Castellanos, A.; Ramos, A.; Gonzalez, A.; Green, N.G.; Morgan, H. Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws. J. Phys. D: Appl. Phys. 2003, 36, 2584, doi:10.1088/0022-3727/36/20/023.
[56]  Liu, L.; Ye, X.; Wu, K.; Han, R.; Zhou, Z.; Cui, T. Humidity sensitivity of multi-walled carbon nanotube networks deposited by dielectrophoresis. Sensors 2009, 9, 1714–1721, doi:10.3390/s90301714. 22573982
[57]  Becker, F.F.; Wang, X.B.; Huang, Y.; Pethig, R.; Vykoukal, J.; Gascoyne, P. Separation of human breast cancer cells from blood by differential dielectric affinity. Proc. Nat. Acad. Sci. USA 1995, 92, 860, doi:10.1073/pnas.92.3.860. 7846067
[58]  Wang, X.B.; Huang, Y.; Wang, X.; Becker, F.F.; Gascoyne, P. Dielectrophoretic manipulation of cells with spiral electrodes. Biophys. J. 1997, 72, 1887–1899, doi:10.1016/S0006-3495(97)78834-9. 9083692
[59]  Khoshmanesh, K.; Zhang, C.; Tovar-Lopez, F.J.; Nahavandi, S.; Baratchi, S.; Kalantar-zadeh, K.; Mitchell, A. Dielectrophoretic manipulation and separation of microparticles using curved microelectrodes. Electrophoresis 2009, 30, 3707–3717, doi:10.1002/elps.200900079. 19810028
[60]  Pommer, M.S.; Zhang, Y.; Keerthi, N.; Chen, D.; Thomson, J.A.; Meinhart, C.D.; Soh, H.T. Dielectrophoretic separation of platelets from diluted whole blood in microfluidic channels. Electrophoresis 2008, 29, 1213–1218, doi:10.1002/elps.200700607. 18288670
[61]  Jang, L.S.; Huang, P.H.; Lan, K.C. Single-cell trapping utilizing negative dielectrophoretic quadrupole and microwell electrodes. Biosens. Bioelectron. 2009, 24, 3637–3644, doi:10.1016/j.bios.2009.05.027. 19545991
[62]  Suehiro, J.; Pethig, R. The dielectrophoretic movement and positioning of a biological cell using a three-dimensional grid electrode system. J. Phys. D: Appl. Phys. 1998, 31, 3298, doi:10.1088/0022-3727/31/22/019.
[63]  Thomas, R.S.; Morgan, H.; Green, N.G. Negative DEP traps for single cell immobilisation. Lab Chip 2009, 9, 1534–1540, doi:10.1039/b819267g. 19458859
[64]  Hoettges, K.F.; Hübner, Y.; Broche, L.M.; Ogin, S.L.; Kass, G.E.N.; Hughes, M.P. Dielectrophoresis-activated multiwell plate for label-free high-throughput drug assessment. Anal. Chem. 2008, 80, 2063–2068, doi:10.1021/ac702083g. 18278948
[65]  Iliescu, C.; Yu, L.; Tay, F.E.H.; Chen, B. Bidirectional field-flow particle separation method in a dielectrophoretic chip with 3D electrodes. Sensor. Actuators B: Chem. 2008, 129, 491–496, doi:10.1016/j.snb.2007.11.023.
[66]  Wang, L.; Lu, J.; Marchenko, S.A.; Monuki, E.S.; Flanagan, L.A.; Lee, A.P. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells. Electrophoresis 2009, 30, 782–791, doi:10.1002/elps.200800637. 19197906
[67]  Dürr, M.; Kentsch, J.; Müller, T.; Schnelle, T.; Stelzle, M. Microdevices for manipulation and accumulation of micro-and nanoparticles by dielectrophoresis. Electrophoresis 2003, 24, 722–731, doi:10.1002/elps.200390087. 12601744
[68]  Pohl, H.A.; Plymale, C.E. Continuous separations of suspensions by nonuniform electric fields in liquid dielectrics. J. Electrochem. Soc. 1960, 107, 390–396, doi:10.1149/1.2427706.
[69]  Chung, C.-C.; Cheng, I.F.; Chen, H.-M.; Kan, H.-C.; Yang, W.-H.; Chang, H.-C. Screening of antibiotic susceptibility to β-Lactam-Induced Elongation of gram-negative bacteria based on dielectrophoresis. Anal. Chem. 2012, 84, 3347–3354, doi:10.1021/ac300093w. 22404714
[70]  Moghimi, N.; Decker, D.R.; Tatic-Lucic, S. Modeling and measurement of dielectrophoretic force and 2-D trajectories of microspheres in quadrupole electrode configuration. IEEE Sens. J. 2012, doi:10.1109/ICSENS.2012.6411508.
[71]  Guan, W.; Joseph, S.; Park, J.H.; Krsti?, P.S.; Reed, M.A. Paul trapping of charged particles in aqueous solution. Proc. Nat. Acad. Sci. USA 2011, 108, 9326–9330, doi:10.1073/pnas.1100977108. 21606331
[72]  Voldman, J.; Toner, M.; Gray, M.; Schmidt, M. Design and analysis of extruded quadrupolar dielectrophoretic traps. J. Electrostat. 2003, 57, 69–90, doi:10.1016/S0304-3886(02)00120-1.
[73]  Taff, B.M.; Voldman, J. A scalable addressable positive-dielectrophoretic cell-sorting array. Anal. Chem. 2005, 77, 7976–7983, doi:10.1021/ac0513616. 16351145
[74]  Yafouz, B.; Kadri, N.A.; Ibrahim, F. The Design and Simulation of a Planar Microarray Dot Electrode for a Dielectrophoretic Lab-on-Chip Device. Int. J. Electrochem. Sci 2012, 7, 12054–12063.
[75]  Fatoyinbo, H.O.; Hoettges, K.F.; Hughes, M.P. Rapid-on-chip determination of dielectric properties of biological cells using imaging techniques in a dielectrophoresis dot microsystem. Electrophoresis 2008, 29, 3–10, doi:10.1002/elps.200700586. 18161693
[76]  Stevens, K.A.; Jaykus, L.-A. Bacterial separation and concentration from complex sample matrices: a review. Critical Rev. Microbiol. 2004, 30, 7–24, doi:10.1080/10408410490266410.
[77]  Park, S.; Koklu, M.; BeskoK, A. Particle trapping in high-conductivity media with electrothermally enhanced negative dielectrophoresis. Anal. Chem. 2009, 81, 2303–2310, doi:10.1021/ac802471g. 19215119
[78]  Fiorini, G.S.; Chiu, D.T. Disposable microfluidic devices: Fabrication, function, and application. BioTechniques 2005, 38, 429–446, doi:10.2144/05383RV02. 15786809

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133