全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Vapor Trace Recognition Using a Single Nonspecific Chemiresistor

DOI: 10.3390/s130709016

Keywords: sensor, electronic nose, pattern recognition, transient response, LDA, QDA

Full-Text   Cite this paper   Add to My Lib

Abstract:

An application of spectral analysis to the transient response signals of ALD-fabricated conductometric sensors (chemiresistors) upon exposure to short vapor pulses is discussed. It is based on the representation of a response curve in the frequency domain, followed by the multi-dimensional Quadratic Discriminant Analysis (QDA) for analyte identification. Compared to the standard steady-state amplitude analysis, this technique does not depend on a short-term sensor drift, does not have limitations for the number of extracted features and has a strict physical validation. Effective recognition of some relatively simple combustible analytes (acetone, toluene, ethanol) was demonstrated using a single nonspecific chemiresistor.

References

[1]  Handbook of Machine Olfaction: Electronic Nose Technology; Pearce, T.C., Schiffman, S.S., Nagle, H.T., Gardner, J.W., Eds.; Wiley-VCH: Weinheim, Germany, 2003.
[2]  Yinon, J. Detection of explosives by electronic noses. Anal. Chem. 2003, 75, 98A–105A, doi:10.1021/ac020428b.
[3]  Pattern Recognition and Machine Learning; Bishop, C.M., Nasrabadi, N.M., Eds.; Springer: New York, NY, USA, 2006.
[4]  Vladimir, D.; Landon, O.; Dewayne, S.; Alexander, L.; Alex, K.; Pavel, B.; Giancarlo, C.; Timothy, C.; Tej, P.; Joseph, W.; et al. ZnO coated nanospring-based chemiresistors. J. Appl. Phys. 2012, 111, 044311, doi:10.1063/1.3686212.
[5]  Vladimir, D.; Landon, O.; Dewayne, S.; Alexander, L.; Alex, K.; Pavel, B.; Giancarlo, C.; Timothy, C.; Tej, P.; Joseph, W.; et al. Towards the nanospring-based artificial olfactory system for trace-detection of flammable and explosive vapors. Sens. Actuators B Chem. 2012, 168, 138–148, doi:10.1016/j.snb.2012.03.074.
[6]  Vladimir, D.; Landon, O.; Dewayne, S.; Alexander, L.; Alex, K.; Pavel, B.; Giancarlo, C.; Timothy, C.; Tej, P.; et al; Joseph, W. Thermal and optical activation mechanisms of the nanospring-based chemiresistors. Sensors 2012, 12, 5608–5622, doi:10.3390/s120505608. 22778604
[7]  Dobrokhotov, V.V.; McIlroy, D.N.; Norton, G.M.; Abdelrahaman, R.; Safir, A.; Berven, C.A. Interaction of hybrid nanowire–nanoparticle structures with carbon monoxide. Nanotechnology 2009, 20, 135504, doi:10.1088/0957-4484/20/13/135504. 19420503
[8]  Dobrokhotov, V.V.; McIlroy, D.N.; Norton, M.G.; Berven, C.A. Transport properties of hybrid nanoparticle-nanowire systems and their application to gas sensing. Nanotechnology 2006, 17, 4135–4142, doi:10.1088/0957-4484/17/16/024. 21727550
[9]  Dobrokhotov, V.; McIlroy, D.N.; Grant Norton, M.; Abuzir, A.; Yeh, W.J.; Stevenson, I.; Pouy, R.; Bochenek, J.; Cartwright, M.; Wang, L.; et al. Principles and mechanisms of gas sensing by Gan-nanowires functionalized with gold nanoparticles. J. Appl. Phys. 2006, 99, 104302, doi:10.1063/1.2195420.
[10]  Kolmakov, A.; Klenov, D.O.; Lilach, Y.; Stemmer, S.; Moskovits, M. Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett. 2005, 5, 667–673, doi:10.1021/nl050082v. 15826106
[11]  Sysoev, V.V.; Joachim, G.; Thomas, S.; Evghenii, S.; Andrei, K. A gradient microarray electronic nose based on percolating SnO2 nanowire sensing elements. Nano Lett. 2007, 7, 3182–3188, doi:10.1021/nl071815+. 17924710
[12]  Sysoev, V.V.; Ilya, K.; Markus, F.; Joachim, G. Temperature gradient effect on gas discrimination power of a metal-oxide thin-film sensor microarray. Sensors 2004, 4, 37–46, doi:10.3390/s40400037.
[13]  Sysoev, V.V.; Bradly, K.; Button, K.W.; Serghei, D.; Andrei, K. Towards the nanoscopic “electronic nose”: Hydrogen versus carbon monoxide discrimination with an array of individual metal oxide nano- and meso-wire sensors. Nano Lett. 2006, 6, 1584–1588, doi:10.1021/nl060185t. 16895339
[14]  Doleman, B.J.; Sanner, R.D.; Severin, E.J.; Grubbs, R.H.; Lewis, N.S. Use of compatible polymer blends to fabricate arrays of carbon black–polymer composite vapor detectors. Anal. Chem. 1998, 70, 2560–2564, doi:10.1021/ac971238h. 9666726
[15]  Sotzing, G.A.; Briglin, S.M.; Grubbs, R.H.; Lewis, N.S. Preparation and properties of vapor detector arrays formed from poly(3,4-ethylenedioxy)thiophene–Poly(styrene sulfonate)/insulating polymer composites. Anal. Chem. 2000, 72, 3181–3190, doi:10.1021/ac991079x. 10939385
[16]  Koscho, M.E.; Grubbs, R.H.; Lewis, N.S. Properties of vapor detector arrays formed through plasticization of carbon black–organic polymer composites. Anal. Chem. 2002, 7, 1307–1315.
[17]  Gutierrez-Osuna, R. Pattern analysis for machine olfaction: A review. IEEE Sens. J. 2002, 2, 189–202, doi:10.1109/JSEN.2002.800688.
[18]  Cosimo, D.; Marco, L.; Pietro, S.; Krishna, C.P. On the study of feature extraction methods for an electronic nose. Sens. Actuators B Chem. 2002, 87, 274–288, doi:10.1016/S0925-4005(02)00247-2.
[19]  Gutierrez-Osuna, R.; Nagle, H.T.; Schiffman, S.S. Transient response analysis of an electronic nose using multi-exponential models. Sens. Actuators B Chem. 1999, 61, 170–182, doi:10.1016/S0925-4005(99)00290-7.
[20]  Alexander, V.; Eduard, L.; Eugenio, M.; Corrado, D.N.; Arnaldo, D'A.; Xavier, C. Feature extraction of metal oxide gas sensors using dynamic moments. Sens. Actuators B Chem. 2007, 122, 219–226, doi:10.1016/j.snb.2006.05.028.
[21]  Mehmet, K.; Muezzinoglua, A.V.; Ramon, H.; Nikolai, R.; Mikhail, I.; Rabinovich, A.S.; Henry, D.I.A. Acceleration of chemo-sensory information processing using transient features. Sens. Actuators B Chem. 2009, 137, 507–512, doi:10.1016/j.snb.2008.10.065.
[22]  Antohe, B.V.; Hayes, D.J.; Ayers, S.; Wallace, D.B.; Grove, M.E.; Christison, M. Portable Vapor Generator for the Calibration and Test of Explosive Detectors. Proceedings of the 2009 IEEE International Conference on Technologies for Homeland Security, Boston, MA, USA, 11–12 May 2009.
[23]  Elam, J.W.; Groner, M.D.; George, S.M. Viscous flow reactor with quartz crystal microbalance for thin film growth by atomic layer deposition. Rev. Sci. Instrum. 2002, 73, 2981, doi:10.1063/1.1490410.
[24]  George, S.M.; Ott, A.W.; Klaus, J.W. Surface chemistry for atomic layer growth. J. Phys. Chem. 1996, 100, 13121–13131, doi:10.1021/jp9536763.
[25]  Elam, J.W.; George, S.M. Growth of ZnO/Al2O3 alloy films using atomic layer deposition techniques. Chem. Mater. 2003, 15, 1020–1028, doi:10.1021/cm020607+.
[26]  Guziewicz, E. ZnO by ALD-advantages of the material grown at low temperature. Acta Phys. Polon. A 2009, 116, 814–817.
[27]  Peter, B. Fourier Analysis of Time Series: An Introduction; John Wiley and Sons: New York, NY, USA, 2003.
[28]  Vergara, A.; Vembu, S.; Ayhan, T.; Ryan, M.A.; Margie, L.H.; Ramón, H. Chemical gas sensor drift compensation using classifier ensembles. Sens. Actuators B Chem. 2012, 166, 320–329.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133