Sensorized Garments and Textrode-Enabled Measurement Instrumentation for Ambulatory Assessment of the Autonomic Nervous System Response in the ATREC Project
Advances in textile materials, technology and miniaturization of electronics for measurement instrumentation has boosted the development of wearable measurement systems. In several projects sensorized garments and non-invasive instrumentation have been integrated to assess on emotional, cognitive responses as well as physical arousal and status of mental stress through the study of the autonomous nervous system. Assessing the mental state of workers under stressful conditions is critical to identify which workers are in the proper state of mind and which are not ready to undertake a mission, which might consequently risk their own life and the lives of others. The project Assessment in Real Time of the Stress in Combatants (ATREC) aims to enable real time assessment of mental stress of the Spanish Armed Forces during military activities using a wearable measurement system containing sensorized garments and textile-enabled non-invasive instrumentation. This work describes the multiparametric sensorized garments and measurement instrumentation implemented in the first phase of the project required to evaluate physiological indicators and recording candidates that can be useful for detection of mental stress. For such purpose different sensorized garments have been constructed: a textrode chest-strap system with six repositionable textrodes, a sensorized glove and an upper-arm strap. The implemented textile-enabled instrumentation contains one skin galvanometer, two temperature sensors for skin and environmental temperature and an impedance pneumographer containing a 1-channel ECG amplifier to record cardiogenic biopotentials. With such combinations of garments and non-invasive measurement devices, a multiparametric wearable measurement system has been implemented able to record the following physiological parameters: heart and respiration rate, skin galvanic response, environmental and peripheral temperature. To ensure the proper functioning of the implemented garments and devices the full series of 12 sets have been functionally tested recording cardiogenic biopotential, thoracic impedance, galvanic skin response and temperature values. The experimental results indicate that the implemented wearable measurement systems operate according to the specifications and are ready to be used for mental stress experiments, which will be executed in the coming phases of the project with dozens of healthy volunteers.
References
[1]
Lymberis, A. Research and development of smart wearable health applications: The challenge ahead. Stud. Health Technol. Inform. 2004, 108, 155–161. 15718642
[2]
Troster, G. The Agenda of Wearable Healthcare. In IMIA Yearbook of Medical Informatics; Schattauer: Stuttgart, Germany, 2005; pp. 125–138.
[3]
Pantelopoulos, A.; Bourbakis, N.G. A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans. Syst. Man Cybern. C. 2010, 40, 1–12.
[4]
Chan, M.; Esteve, D.; Fourniols, J. Y.; Escriba, C.; Campo, E. Smart wearable systems: Current status and future challenges. Artif. Intell. Med. 2012, 56, 137–56, doi:10.1016/j.artmed.2012.09.003. 23122689
[5]
Ivonin, L.; Chang, H.-M.; Chen, W.; Rauterberg, M. Unconscious emotions: Quantifying and logging something we are not aware of. Pers. Ubiquit. Comput. 2012, 17, 663–673.
[6]
Kimmy, A.; Chen, W.; Lindsay, B. Smart Photo Frame for Arousal Feedback—Wearable Sensors and Intelligent Healthy Work Environment. Proceedings of the 7th International Conference on Intelligent Environments, Nottingham, UK, 25–28 July 2011; pp. 685–696.
[7]
Lanata, A.; Scilingo, E.P.; de Rossi, D. A multimodal transducer for cardiopulmonary activity monitoring in emergency. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 817–825, doi:10.1109/TITB.2009.2024414. 19527961
[8]
Di Rienzo, M.; Rizzo, F.; Meriggi, P.; Castiglioni, P.; Mazzoleni, P.; Ferrarin, M.; Ferratini, M. MagIC: A Textile System for Vital Signs Monitoring. Advancement in Design and Embedded Intelligence for Daily Life Applications. Proceedings of the 29th Annual International Conference of the Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; pp. 3958–3961.
[9]
Reiter, H.; Muehlsteff, J.; Sipila, A. Medical application and clinical validation for reliable and trustworthy physiological monitoring using functional textiles: Experience from the HeartCycle and MyHeart project. Conf. Proc. IEEE. Eng. Med. Biol. Soc. 2011, doi:10.1109/IEMBS.2011.6090888.
[10]
Polar Electro Oy. Polar H6 Hear Rate Sensor. Available online: http://www.polarusa.com/us-en/products/accessories/H6 (on accessed 10 March 2013).
[11]
Vivonoetics. The Equivital TnR Product Range. Available online: http://vivonoetics.com/wp-content/downloads/Brochures/General TnR Brochure Vivonoetics contact.pdf (on accessed 9 July 2013).
[12]
Nuubo. nECG shirt L1. Available online: http://www.nuubo.com/sites/default/themes/nuubo2/pdf/DATASHEETS_EN_shirt.pdf (on accessed 10 March 2013).
[13]
Sloan, R.P.; Shapiro, P.A.; Bagiella, E.; Boni, S.M.; Paik, M.; Bigger, J.T., Jr.; Steinman, R. C.; Gorman, J. M. Effect of mental stress throughout the day on cardiac autonomic control. Biol. Psychol. 1994, 37, 89–99, doi:10.1016/0301-0511(94)90024-8. 8003592
[14]
Jovanov, E.; Lords, A.O.; Raskovic, D.; Cox, P.G.; Adhami, R.; Andrasik, F. Stress monitoring using a distributed wireless intelligent sensor system. IEEE Eng. Med. Biol. Mag. 2003, 22, 49–55. 12845819
[15]
Bernardi, L.; Wdowczyk-Szulc, J.; Valenti, C.; Castoldi, S.; Passino, C.; Spadacini, G.; Sleight, P. Effects of controlled breathing, Mental activity and mental stress with or without verbalization on heart rate variability. J. Am. Coll. Cardiol. 2000, 35, 1462–1469, doi:10.1016/S0735-1097(00)00595-7. 10807448
[16]
Saidatul, A.; Paulraj, M.P.; Yaacob, S.; Mohamad Nasir, N.F. Automated System for Stress Evaluation Based on EEG Signal: A Prospective Review. Proceedings of the IEEE 7th International Colloquium on Signal Processing and its Applications, Penang, Malaysia, 4–6 March 2011; pp. 167–171.
[17]
Setz, C.; Arnrich, B.; Schumm, J.; La Marca, R.; Troster, G.; Ehlert, U. Discriminating stress from cognitive load using a wearable EDA device. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 410–417, doi:10.1109/TITB.2009.2036164. 19906598
[18]
Villarejo, M.V.; Zapirain, B.G.; Zorrilla, A.M. A stress sensor based on Galvanic Skin Response (GSR) controlled by ZigBee. Sensors 2012, 12, 6075–6101, doi:10.3390/s120506075. 22778631
[19]
Kataoka, H.; Kano, H.; Yoshida, H.; Saijo, A.; Yasuda, M.; Osumi, M. Development of a Skin Temperature Measuring System for Non-Contact Stress Evaluation. Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Hong Kong, 29 October–1 November 1998; pp. 940–943.
[20]
Axisa, F.; Dittmar, A.; Delhomme, G. Smart Clothes for the Monitoring in Real Time and Conditions of Physiological, Emotional and Sensorial Reactions of Human. Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Valencia, Spain, 21–25 July 2003; pp. 3744–3747.
[21]
Axisa, F.; Gehin, C.; Delhomme, G.; Collet, C.; Robin, O.; Dittmar, A. Wrist Ambulatory Monitoring System and Smart Glove for Real Time Emotional, Sensorial and Physiological Analysis. Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, USA, 1–5 September 2004.
[22]
Valenza, G.; Lanata, A.; Scilingo, E.P.; de Rossi, D. Towards a Smart Glove: Arousal Recognition Based on Textile Electrodermal Response. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 3598–3601.
[23]
Katsis, C.D.; Katertsidis, N.; Ganiatsas, G.; Fotiadis, D.I. Toward emotion recognition in car-racing drivers: A biosignal processing approach. IEEE Trans. Syst. Man Cybern. A 2008, 38, 502–512, doi:10.1109/TSMCA.2008.918624.
[24]
Strauss, M.; Reynolds, C.; Hughes, S.; Park, K.; McDarby, G.; Picard, R.W. The Handwave bluetooth skin conductance sensor. Lect. Note. Comput. Sci. 2005, 3784, 699–706.
[25]
Scheirer, J.; Picard, R. The Galvactivator: A Glove That Senses and Communicates Skin Conductivity. Proceedings of the 9th International Conference on Human-Computer Interaction, New Orleans, LA, USA, 5–10 August 2001.
[26]
Fletcher, R.R.; Dobson, K.; Goodwin, M.S.; Eydgahi, H.; Wilder-Smith, O.; Fernholz, D.; Kuboyama, Y.; Hedman, E.B.; Poh, M.-Z.; Picard, R. W. iCalm: Wearable sensor and network architecture for wirelessly communicating and logging autonomic activity. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 215–223, doi:10.1109/TITB.2009.2038692. 20064760
[27]
Poh, M.-Z.; Swenson, N. C.; Picard, R. W. A wearable sensor for unobtrusive, long-term assessment of electrodermal activity. IEEE Trans. Biomed. Eng. 2010, 57, 1243–1252, doi:10.1109/TBME.2009.2038487. 20172811
[28]
Ouwerkerk, M. Unobtrusive emotions sensing in daily life. Philips Res. Book Ser. 2011, 12, 21–39.
[29]
de Santos Sierra, A.; Avila, C.S.; Guerra Casanova, J.; del Pozo, G.B. A stress-detection system based on physiological signals and fuzzy logic. IEEE Trans. Ind. Electron. 2011, 58, 4857–4865, doi:10.1109/TIE.2010.2103538.
[30]
Zhai, J.; Barreto, A.B.; Chin, C.; Chao, L. Realization of Stress Detection Using Psychophysiological Signals for Improvement of Human-Computer Interactions. Proceedings of the IEEE SoutheastCon2005, Ft. Lauderdale, FL, USA, 8–10 April 2005; pp. 415–420.
[31]
Liu, G.-Z.; Huang, B.-Y.; Wang, L. A wearable respiratory biofeedback system based on generalized body sensor network. Telemed. J. E-Health 2011, 17, 348–357, doi:10.1089/tmj.2010.0182. 21545293
[32]
Braecklein, M.; Tchoudovski, I.; Moor, C.; Egorouchkina, K.; Pang, L.; Bolz, A. Wireless telecardiological monitoring system for the homecare area. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2005, 4, 3793–3795. 17281055
[33]
Gargiulo, G.; Bifulco, P.; Cesarelli, M.; Ruffo, M.; Romano, M.; Calvo, R.A.; Jin, C.; van Schaik, A. An ultra-high input impedance ECG amplifier for long-term monitoring of athletes. Med. Dev. 2010, 3, 1, doi:10.5194/gmd-3-1-2010.
[34]
de Rossi, D.; Carpi, F.; Lorussi, F.; Mazzoldi, A.; Paradiso, R.; Scilingo, E. P.; Tognetti, A. Electroactive fabrics and wearable biomonitoring devices. AUTEX Res. J. 2003, 3, 180–185.
[35]
Grossman, P. The LifeShirt: a multi-function ambulatory system monitoring health, disease, and medical intervention in the real world. Stud. Health Technol. Inform. 2004, 108, 133–141. 15718639
[36]
Weber, J.; Blanc, D.; Dittmar, A.; Comet, B.; Corroy, C.; Noury, N.; Baghai, R.; Vaysse, S.; Blinowska, A. Telemonitoring of vital parameters with newly designed biomedical clothing. Stud. Health Technol. Inform 2004, 108, 260–265. 15718654
[37]
Zhang, Y.-t.; Poon, C. C.; Chan, C.-h.; Tsang, M. W.; Wu, K.-F. A Health-Shirt Using e-Textile Materials for the Continuous and Cuffless Monitoring of Arterial Blood Pressure. Proceedings of the 3rd IEEE /EMBS International Summer School on Medical Devices and Biosensors, Cambridge, MA, USA, 4–6 September 2006; pp. 86–89.
[38]
Yoo, J.; Yan, L.; Lee, S.; Kim, H.; Yoo, H.-J. A wearable ECG acquisition system with compact planar-fashionable circuit board-based shirt. IEEE Trans. Inf. Technol. Biomed. 2009, 13, 897–902, doi:10.1109/TITB.2009.2033053. 19789119
[39]
Linz, T.; Kallmayer, C.; Aschenbrenner, R.; Reichl, H. Fully Untegrated EKG Shirt Based on Embroidered Electrical Interconnections with Conductive Yarn and Miniaturized Flexible Electronics. Proceedings of the International Workshop on Wearable and Implantable Body Sensor Networks, Cambridge, MA, USA, 3–5 April 2006; pp. 26–30.
[40]
Paradiso, R.; Loriga, G.; Taccini, N.; Gemignani, A.; Ghelarducci, B.W. A wearable health-care system: New frontier on etextile. J. Telecommun. Inform. Technol. 2005, 4, 105–113.
[41]
Picard, R.W. Future affective technology for autism and emotion communication. Phil. Trans. Roy. Soc. B-Biol. Sci. 2009, 364, 3575–3584, doi:10.1098/rstb.2009.0143.
[42]
Merritt, C.R.; Nagle, H.T.; Grant, E. Fabric-Based active electrode design and fabrication for health monitoring clothing. IEEE Trans. Inf. Technol. Biomed. 2009, 13, 274–280, doi:10.1109/TITB.2009.2012408. 19174357
[43]
Seoane, F.; Ferreira, J.; Sanchéz, J. J.; Bragós, R. Analog front-end enables electrical impedance spectroscopy system on-chip for biomedical applications. Physiol. Meas. 2008, doi:10.1088/0967-3334/29/6/S23.
[44]
Shaomei, W.; Tao, L. Exploring the Use of Physiology in Adaptive Game Design. Proceedings of the International Conference on Consumer Electronics, Communications and Networks (CECNet), XianNing, China, 16–18 April 2011; pp. 1280–1283.
[45]
Marquez, J.C.; Rempfler, M.; Seoane, F.; Lindecrantz, K. Textrode-enabled transthoracic electrical bioimpedance measurements. Towards wearable applications of impedance cardiography. J. Elect. Bioimpedance. under revision .
[46]
Marquez, J.C.; Seoane, F.; V?lim?ki, E.; Lindecrantz, K. Comparison of dry-textile electrodes for electrical bioimpedance spectroscopy measurements. J. Phys. Confer. Ser. 2010, doi:10.1088/1742-6596/224/1/012140.
[47]
Marquez, J.C.; Seoane, F.; Lindecrantz, K. Textrode functional straps for bioimpedance measurements--experimental results for body composition analysis. Eur. J. Clin. Nutr. 2013, doi:10.1038/ejcn.2012.161.
[48]
Bouwstra, S.; Wei, C.; Feijs, L.; Oetomo, S. B. Smart Jacket Design for Neonatal Monitoring with Wearable Sensors. Proceedings of the 6th International Workshop on Wearable and Implantable Body Sensor Networks, Berkeley, CA, USA, 3–5 June 2009; pp. 162–167.
[49]
Working Group on Borderline and Classification for Consultation. Manual on Borderline and Classification in the Community Regulatory Framework for Medical Devices; European Commission: Brussels, Belgium, 2012; p. 57.
[50]
European Commission. Medical Devices Council Directive 93/42/EEC. Offic. J. Eur. Union 1993.
[51]
Cunico, F. J.; Marquez, J. C.; Hilke, H.; Skrifvars, M.; Seoane, F. Studying the performance of conductive polymer films as textile electrodes for electrical bioimpedance measurements. J. Phys. Confer. Ser. 2013, doi:10.1088/1742-6596/434/1/012027.