全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

A Radiosonde Using a Humidity Sensor Array with a Platinum Resistance Heater and Multi-Sensor Data Fusion

DOI: 10.3390/s130708977

Keywords: radiosonde, CPU, temperature sensor, humidity sensor, MEMS, sensor array, condensation, multi-sensor data fusion

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper describes the design and implementation of a radiosonde which can measure the meteorological temperature, humidity, pressure, and other atmospheric data. The system is composed of a CPU, microwave module, temperature sensor, pressure sensor and humidity sensor array. In order to effectively solve the humidity sensor condensation problem due to the low temperatures in the high altitude environment, a capacitive humidity sensor including four humidity sensors to collect meteorological humidity and a platinum resistance heater was developed using micro-electro-mechanical-system (MEMS) technology. A platinum resistance wire with 99.999% purity and 0.023 mm in diameter was used to obtain the meteorological temperature. A multi-sensor data fusion technique was applied to process the atmospheric data. Static and dynamic experimental results show that the designed humidity sensor with platinum resistance heater can effectively tackle the sensor condensation problem, shorten response times and enhance sensitivity. The humidity sensor array can improve measurement accuracy and obtain a reliable initial meteorological humidity data, while the multi-sensor data fusion technique eliminates the uncertainty in the measurement. The radiosonde can accurately reflect the meteorological changes.

References

[1]  Ma, S.Q.; Zhao, Z.Q.; Xing, Y. VAISALA's radiosonde technology and advancement in radiosonde technology in China. Meteorol. Sci. Technol. 2005, 10, 390–393.
[2]  Zhao, S.J.; Su, X.Y.; Gao, T.C. Performance analysis of RS92 radiosonde for sounding temperature, pressure, and humidity. Meteorol. Sci. Technol. 2012, 2, 31–33.
[3]  Fuke, M.V.; Adhyapak, P.V.; Mulik, U.P.; Amalnerkar, D.P.; Aiyer, R.C. Electrical and humidity characterization of m-NA doped Au/PVA nanocomposites. Talanta 2009, 78, 590–595.
[4]  Lv, X.; Li, Y.; Hong, L.; Luo, D.; Yang, M. A highly water-resistive humidity sensor based on silicon containing polyelectrolytes prepared by one-pot method. Sens. Actuators B-Chem. 2007, 124, 347–351.
[5]  Dessler, A.E.; Sherwood, S.C. A matter of humidity. Science 2009, 323, 1020–1021.
[6]  Traversa, E. Ceramic sensors for humidity detection: The state-of-the-art and future developments. Sens. Actuators B-Chem. 1995, 23, 135–156.
[7]  Patissier, B. Humidity sensors for automotive, appliances and consumer applications. Sens. Actuators B-Chem. 1999, 59, 231–234.
[8]  Rubinger, C.P.L.; Calado, H.D.R.; Rubinger, R.M.; Oliveira, H.; Donnici, C.L. Characterization of a sulfonated polycarbonate resistive humidity sensor. Sensors 2013, 13, 2023–2032.
[9]  Chen, Z.; Lu, C. Humidity sensors: A review of materials and mechanism. Sens. Lett. 2005, 3, 274–295.
[10]  Shi, J.; Hsiao, V.K.S.; Walker, T.R.; Huang, T.J. Humidity sensing based on nanoporous polymeric photonic crystals. Sens. Actuators B-Chem. 2008, 129, 391–396.
[11]  Lee, S.P.; Lee, J.G.; Chowdhury, S. Full research paper CMOS humidity sensor system using carbon nitride film as sensing materials. Sensors 2008, 8, 2662–2672.
[12]  Ahmad, Z.; Sayyad, M.H.; Saleem, M.; Karimov, K.S.; Shah, M. Humidity-dependent characteristics of methyl-red thin film-based Ag/methyl-red/Ag surface-type cell. Physica E 2008, 41, 18–22.
[13]  Li, Y.; Hong, L.; Yang, M. Crosslinked and quaternized poly (4-vinylpyridine)/polypyrrole composite as a potential candidate for the detection of low humidity. Talanta 2008, 75, 412–417.
[14]  Fenner, R.; Zdankiewicz, E. Micromachined water vapor sensors: A review of sensing technologies. IEEE Sens. J. 2001, 10, 309–317.
[15]  Kang, U.S.; Wise, K.D. A high-speed capacitive humidity sensor with on-chip thermal reset. IEEE Trans. Electron. Devices 2000, 4, 702–710.
[16]  Sen, A.K.; Darabi, J. Modeling and optimization of a microscale capacitive humidity sensor for HVAC applications. IEEE Sens. J. 2008, 4, 333–340.
[17]  Hudoklin, D.; Bojkovski, J.; Nielsen, J.; Drnovsek, J. Design and validation of a new primary standard for calibration of the top-end humidity sensors. Measurement 2008, 41, 950–959.
[18]  Rittersma, Z.M. Recent achievements in miniaturised humidity sensors—A review of transduction techniques. Sens. Actuators A-Phys. 2002, 96, 196–210.
[19]  Matko, V.; Donlagic, D. Sensor for high-air-humidity measurement. IEEE Trans. Instrum. Meas. 1996, 45, 561–563.
[20]  Matko, V.; Koprivnikar, J. Quartz sensor for water absorption measurement in glass-fiber resins. IEEE Trans. Instrum. Meas. 1998, 47, 1159–1162.
[21]  Schubert, P.J.; Nevin, J.H. A polyimide-based capacitive humidity sensor. IEEE Trans. Electron. Devices 1985, 7, 1220–1223.
[22]  Lei, Y.; Lin, J.; He, Z.; Kong, D. A method based on multi-sensor data fusion for fault detection of planetary gearboxes. Sensors 2012, 12, 2005–2009.
[23]  Dai, C.-L. A capacitive humidity sensor integrated with micro heater and ring oscillator circuit fabricated by CMOS-MEMS technique. Sens. Actuators B-Chem. 2007, 122, 375–380.
[24]  Richard, T. Principles of effective multisensory data fusion. Mil. Technol. 2003, 27, 29–37.
[25]  Gao, J.B.; Harris, C.J. Some remarks on Kalman filters for the multisensor fusion. Inf. Fusion 2002, 3, 191–201.
[26]  Durrant-Whyte, H.F. Sensor models and multi-sensor integration. Int. J. Robot. Res. 2001, 7, 87–92.
[27]  Liu, Z.P. The reject Analysis of gross error detection instrument. Electron. Meas. Technol. 2009, 11, 56–57.
[28]  Zhao, C.-L.; Qin, M. A fully packaged CMOS interdigital capacitive humidity sensor with polysilicon. Heaters 2011, 11, 2986–2990.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133