Measurements of the Weak UV Absorptions of Isoprene and Acetone at 261–275 nm Using Cavity Ringdown Spectroscopy for Evaluation of a Potential Portable Ringdown Breath Analyzer
The weak absorption spectra of isoprene and acetone have been measured in the wavelength range of 261–275 nm using cavity ringdown spectroscopy. The measured absorption cross-sections of isoprene in the wavelength region of 261–266 nm range from 3.65 × 10 ?21 cm 2·molecule ?1 at 261 nm to 1.42 × 10 ?21 cm 2·molecule ?1 at 266 nm; these numbers are in good agreement with the values reported in the literature. In the longer wavelength range of 270–275 nm, however, where attractive applications using a single wavelength compact diode laser operating at 274 nm is located, isoprene has been reported in the literature to have no absorption (too weak to be detected). Small absorption cross-sections of isoprene in this longer wavelength region are measured using cavity ringdown spectroscopy for the first time in this work, i.e., 6.20 × 10 ?23 cm 2·molecule ?1 at 275 nm. With the same experimental system, wavelength-dependent absorption cross-sections of acetone have also been measured. Theoretical detection limits of isoprene and comparisons of absorbance of isoprene, acetone, and healthy breath gas in this wavelength region are also discussed.
References
[1]
Mui, P.W.; Grunwald, E. Enthalpy change for the s-trans to cis-trans conformational equilibrium in 2-methyl-1,3-butadiene (isoprene), as studied by high-temperature ultraviolet absorption spectroscopy. J. Phys. Chem. 1984, 88, 6340–6344, doi:10.1021/j150669a056.
[2]
MPI-Mainz-UV-VIS Spectral Atlas of Gaseous Molecules; Germany. Available online: http://www.atmosphere.mpg.de/enid (accessed 15 March 2013).
[3]
Mürtz, M. Breath diagnostics using laser spectroscopy. Opt. Photon. News 2005, 16, 30–35.
[4]
McCurdy, M.R.; Bakhirkin, Y.; Wysocki, G.; Lewicki, R.; Tittel, R.F.K. Recent advances of laser-spectroscopy-based techniques for applications in breath analysis. J. Breath Res. 2007, 1, doi:10.1088/1752-7155/1/1/014001.
[5]
Wang, C.; Sahay, P. Breath analysis using laser spectroscopic techniques: Breath biomarkers, spectral fingerprints, and detection limits. Sensors 2009, 9, 8230–8262, doi:10.3390/s91008230. 22408503
[6]
Buszewski, B.; Kesy, M.; Ligor, T.; Amann, A. Human exhaled air analytics: Biomarkers of diseases. Biomed. Chromatogr BMC 2007, 21, 553–566, doi:10.1002/bmc.835.
[7]
Grote, C.; Pawliszyn, J. Solid-phase microextraction for the analysis of human breath. Anal. Chem. 1997, 69, 587–596, doi:10.1021/ac960749l. 9043197
[8]
Lord, H.; Yu, Y.F.; Segal, A.; Pawliszyn, J. Breath analysis and monitoring by membrane extraction with sorbent interface. Anal. Chem. 2002, 74, 5650–5657, doi:10.1021/ac025863k. 12433101
Herbig, J.; Amann, A. Proton transfer reaction-mass spectrometry applications in medical research. J. Breath Res. 2009, 3, 020201–020202, doi:10.1088/1752-7163/3/2/020201. 21383455
[11]
Scherrer, S.T.; Wang, C.; Winstead, C.B. Near Infrared Measurements of Volatile Organic Compounds Using Diode Laser Cavity Ringdown Spectroscopy. Proceedings of 60th International Symposium on Molecular Spectroscopy.
[12]
Wang, C.; Mbi, A. A new acetone detection device using cavity ringdown spectroscopy at 266 nm: Evaluation of the instrument performance using acetone sample solutions. Meas. Sci. Technol. 2007, 18, 2731–2741, doi:10.1088/0957-0233/18/8/051.
[13]
Semiconductor Lasers: Laser diodes are getting the green light. Laser Focus World. Available online: http://www.laserfocusworld.com/articles/print/volume-45/issue-4/world-news/semiconductor-lasers-laser-diodes-are-getting-the-green-light.html (accessed on 15 March 2013).
[14]
Nomura, I.; Kishino, K.; Ebisawa, T.; Sawafuji, Y.; Ujihara, R.; Tasai, K.; Nakamura, H.; Asatsuma, T.; Nakajima, H. Photopumped green lasing on BeZnSeTe double heterostructures grown on InP substrates. Appl. Phys. Lett. 2009, 94, doi:10.1063/1.3058761.
[15]
Pauling, L.; Robinson, A.B.; Teranishi, R.; Cary, P. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proc. Natl. Acad. Sci. USA 1971, 68, 2374–2384, doi:10.1073/pnas.68.10.2374. 5289873
[16]
Jansson, B.O.; Larson, B.T. Analysis of organic compounds in human breath by gas chromatography-mass spectrometry. J. Lab. Clin. Med. 1969, 74, 961–966. 5359667
[17]
Mendis, S.; Sobotka, P.A.; Euler, D.E. Pentane and isoprene in expired air from humans: Gas-chromatographic analysis of single breath. Clin. Chem. 1994, 40, 1485–1488. 8044986
Kohlmuller, D.; Kochen, W. Is n-pentane really an index of lipid peroxidation in humans and animals? A methodological reevaluation. Anal. Biochem. 1993, 210, 268–276, doi:10.1006/abio.1993.1195. 8512062
[20]
Taucher, J.; Hansel, A.; Jordan, A.; Fall, R.; Futrell, J.H.; Lindinger, W. Detection of isoprene in expired air from human subjects using proton-transfer-reaction mass spectrometry. Rapid Commun. Mass Spectrom. 1997, 11, 1230–1234, doi:10.1002/(SICI)1097-0231(199707)11:11<1230::AID-RCM3>3.0.CO;2-Z. 9260307
[21]
Stone, B.G.; Besse, T.J.; Duane, W.C.; Evans, C.D.; de Master, E.G. Effect of regulating cholesterol biosynthesis on breath isoprene excretion in men. Lipid 1993, 28, 705–708, doi:10.1007/BF02535990.
[22]
Guenther, A.; Hewitt, C.N.; Erickson, D.; Fall, R.; Geron, C.; Graedel, T.; Harley, P.; Klinger, L.; Lerdau, M.; McKay, W.A.; Pierce, T.; Scholes, B.; Steinbrecher, R.; Tallamraju, R.; Taylor, J.; Zimmerman, P. A global model of natural volatile organic compound emissions. J. Geophys. Res. 1995, 100, 8873–8892, doi:10.1029/94JD02950.
[23]
McKay, W.A.; Turner, M.F.; Jones, B.M.R.; Halliwell, C.M. Emissions of hydrocarbons from marine phytoplankton-some results from controlled laboratory experiments. Atmos. Res. 1996, 30, 2583–2593.
[24]
Gil-Av, E.; Shabtai, J. Precursors of carcinogenic hydrocarbons in tobacco smoke. Nature 1963, 197, 1065–1066, doi:10.1038/1971065a0. 13947791
[25]
Hauglustaine, D.A.; Madronich, S.; Ridley, B.A.; Flocke, S.J.; Cantrell, C.A.; Eisele, F.L.; Shetter, R.E.; Tanner, D.J.; Ginoux, P.; Atlas, E.L. Photochemistry and budget of ozone during the Mauna Loa Observatory Photochemistry Experiment (MLOPEX 2). J. Geophys. Res. 1999, 104, 30275–30307, doi:10.1029/1999JD900441.
[26]
Fuentes, J.D.; Lerdau, M.; Atkinson, R.; Baldocchi, D.; Bottenheim, J.W.; Ciccioli, P.; Lamb, B.; Geron, C.; Gu, L.; Guenther, A.; Sharkey, T.D.; Stockwell, W. Biogenic hydrocarbons in the atmospheric boundary layer: A review. Bull. Am. Meteorol. Soc. 2000, 81, 1537–1575, doi:10.1175/1520-0477(2000)081<1537:BHITAB>2.3.CO;2.
[27]
Wang, C.; Scherrer, S.T.; Hossain, D. Measurements of cavity ringdown spectroscopy of acetone in the ultraviolet and near-infrared spectral regions: Potential for development of a breath analyzer. Appl. Spectrosc. 2004, 58, 784–791, doi:10.1366/0003702041389193. 15282042
[28]
Cias, P.; Wang, C.; Dibble, T. Absorption cross-section of the C–H overtone of volatile organic compounds: 2 methyl-1, 3-butadiene (isoprene), 1, 3-butadiene, and 2, 3-dimethyl-1, 3 butadiene. Appl. Spectrosc. 2007, 61, 230–236, doi:10.1366/000370207779947440. 17331317
[29]
Wang, C.; Mbi, A.; Shepherd, M. A study on breath acetone in diabetic patients using a cavity ringdown breath analyzer: Exploring correlations of breath acetone with blood glucose and glycohemoglobin A1C. IEEE Sens. J. 2010, 10, 54–63, doi:10.1109/JSEN.2009.2035730.
[30]
Wang, C.; Surampudi, A.B. An acetone breath analyzer using cavity ringdown spectroscopy: An initial test with human subjects under various situations. Meas. Sci. Technol. 2008, 19, 105604–105614, doi:10.1088/0957-0233/19/10/105604.
[31]
Yujing, M.; Mellouki, A. The near-UV absorption cross sections for several ketones. J. Photochem. Photobio. A Chem. 2000, 134, 31–36, doi:10.1016/S1010-6030(00)00243-4.
[32]
Da Silva, F.F.; Nobre, M.; Fernandes, A.; Antunes, R.; Almeida, D.; Garcia, G.; Mason, N.J.; Lim?o-Vieira, P. Spectroscopic studies of ketones as a marker for patients with diabetes. J. Phys. Conf. Ser. 2008, 101, doi:10.1088/1742-6596/101/1/012011.
[33]
NIST Chemistry WebBook. Acetone UV/VIS Spectrum; Acetone IR Spectrum. Available online: http://webbook.nist.gov/chemistry (15 March 2013).
[34]
Campuzano-Jost, P.; Williams, M.B.; D'Ottone, L.; Hynes, A.J. Kinetics and mechanism of the reaction of the hydroxyl radical with h8-isoprene and d8-isoprene: Isoprene absorption cross section, rate coefficients, and the mechanism of the hydroperoxyl radical production. J. Phys. Chem. A 2004, 108, 1537–1551, doi:10.1021/jp0363601.
[35]
Martins, G.; Ferreira-Rodrigues, A.M.; Rodrigues, F.N.; de Souza, G.G.B.; Mason, N.J.; Eden, S.; Duflot, D.; Flament, J.-P.; Hoffmann, S.V.; Delwiche, J.; Hubin-Franskin, M.-J.; Lim?o-Vieira, P. Valence shell electronic spectroscopy of isoprene studied by theoretical calculations and by electron scattering, photoelectron, and absolute photoabsorption measurements. Phys. Chem. Chem. Phys. 2009, 11, 11219–11231, doi:10.1039/b916620c. 20024391
Wang, C.; Miller, G.P.; Winstead, C.B. Cavity Ringdown Laser Spectroscopy. In Encyclopedia of Analytical Chemistry; Meyers, R.A., Ed.; John Wiley: New York, NY, USA, 2008.
Kushch, I.; Arendacká, B.; ?tolc, S.; Mochalski, P.; Filipiak, W.; Schwarz, K.; Schwentner, L.; Schmid, A.; Dzien, A.; Lechleitner, M.; Witkovsky, V.; Miekisch, W.; Schubert, J.; Unterkofler, K.; Amann, A. Breath isoprene—Aspects of normal physiology related to age, gender and cholesterol profile as determined in a proton transfer reaction mass spectrometry study. Clin. Chem. Lab Med. 2008, 46, 1011–1018. 18605961
[40]
King, J.; Koc, H.; Unterkofler, K.; Mochalski, P.; Kupferthaler, A.; Teschl, G.; Teschl, S.; Hinterhuber, H.; A., A. Physiological modeling of isoprene dynamics in exhaled breath. J. Theoret. Biol. 2010, 267, 626–637, doi:10.1016/j.jtbi.2010.09.028.
[41]
King, J.; Kupferthaler, A.; Unterkofler, K.; Koc, H.; Teschl, S.; Teschl, G.; Miekisch, W.; Schubert, J.; Hinterhuber, H.; Amann, A. Isoprene and acetone concentration profiles during exercise at an ergometer. J. Breath Res. 2009, 3, doi:10.1088/1752-7155/3/2/027006.
[42]
Lagesson, V.; Lagesson-Andrasko, L.; Andrasko, J.; Baco, F. Identification of compounds and specific functional groups in the wavelength region 168-330 nm using gas chromatography with UV detection. J. Chromatogr. A 2000, 867, 187–206, doi:10.1016/S0021-9673(99)01123-1. 10670721
[43]
Kinoyanma, M.; Nitta, H.; Watanabe, A.; Ueda, H. Acetone and isoprene concentration in exhaled breath in healthy subjects. J. Health Sci. 2008, 54, 471–477, doi:10.1248/jhs.54.471.
[44]
King, J.; Mochalski, P.; Kupferthaler, A.; Unterkofler, K.; Koc, H.; Filipiak, W.; Teschl, S.; Hinterhuber, H.; Amann, A. Dynamic profiles of volatile organic compounds in exhaled breath as determined by a coupled PTR-MS/GC-MS study. Physiol. Meas. 2010, 31, 1169–1184, doi:10.1088/0967-3334/31/9/008. 20664160
[45]
Jones, A.W.; Lagesson, V.; Tagesson, C. Determination of isoprene in human breath by thermal desorption gas chromatography with ultraviolet detection. J. Chromatogr. B Biomed. Appl. 1995, 672, 1–6, doi:10.1016/0378-4347(95)00207-Y. 8590920
[46]
Zuckermann, H.; Schmitz, B.; Hass, Y. Dissociation energy of an isolated triplet acetone molecule. J. Phys. Chem. 1988, 92, 4835–4837, doi:10.1021/j100328a007.
[47]
Hass, Y. Photochemical α-cleavage of ketones: Revisiting acetone. Photo. Chem. Photobiol. Sci. 2004, 3, 6–16, doi:10.1039/b307997j.
[48]
Norrish, R.G.W.; Crone, H.G.; Saltmarsh, O.D. Primary photochemical reactions. Part V. The spectroscopy and photochemical decomposition of acetone. J. Chem. Soc. 1934, 1456–1464.
[49]
Nobre, M.; Fernandes, A.; da Ferreira, S.F.; Antunes, R.; Almeida, D.; Kokhan, V.; Hoffmann, S.V.; Mason, N.J.; Eden, S.; Lim?o-Vieira, P. The VUV electronic spectroscopy of acetone studied by synchrotron radiation. Phys. Chem. Chem. Phys. 2008, 10, 550–560, doi:10.1039/b708580j. 18183316
[50]
Turner, C.; ?paněl, P.; Smith, D. A longitudinal study of ammonia, acetone and propanol in the exhaled breath of 30 subjects using selected ion flow tube mass spectrometry. SIFT-MS Physiol. Meas. 2006, 27, 321–337, doi:10.1088/0967-3334/27/4/001.
[51]
Smith, D.; ?paněl, P.; Enderby, B.; Lenney, W.; Turner, C.; Davies, S.J. Isoprene levels in the exhaled breath of 200 healthy pupils within the age range 7-18 years studied using SIFT-MS. J. Breath Res. 2010, 4, doi:10.1088/1752-7155/4/1/017101.