We have developed an ultrasensitive indirect competitive enzyme-linked immunosorbent assay for the determination of tartrazine. Two carboxylated analogues of tartrazine with different spacer lengths, and one derivative from commercial tartrazine after a little chemical modification, were synthesized as haptens in order to produce antibodies specific to tartrazine. The effect of sulfonic acid groups on the hapten structure of tartrazine was also studied carefully for the first time. A most specific monoclonal antibody against tartrazine was created and exhibited an IC 50 value of 0.105 ng/mL and a limit of detection of 0.014 ng/mL, with no cross-reactivity to other structurally-related pigments. The established immunoassay was applied to the determination of tartrazine in fortified samples of orange juice and in real positive samples of carbonated beverages.
References
[1]
Amin, K.A.; Hameid, H.A.; Abd Elsttar, A.H. Effect of food azo dyes tartrazine and carmoisine on biochemical parameters related to renal, hepatic function and oxidative stress biomarkers in young male rats. Food Chem. Toxicol. 2010, 48, 2994–2999, doi:10.1016/j.fct.2010.07.039. 20678534
[2]
Demirkol, O.; Zhang, X.S.; Ercal, N. Oxidative effects of tartrazine (cas no. 1934-21-0) and new coccin (cas no. 2611-82-7) azo dyes on cho cells. J. Fur Verbraucherschutz Und Lebensmittelsicherheit 2012, 7, 229–236, doi:10.1007/s00003-012-0782-z.
[3]
Henschler, D.; Wild, D. Mutagenic activity in rat urine after feeding with the azo dye tartrazine. Arch. Toxicol. 1985, 57, 214–215, doi:10.1007/BF00290891. 4062556
[4]
Kashanian, S.; Zeidali, S.H. DNA binding studies of tartrazine food additive. DNA Cell Biol. 2011, 30, 499–505, doi:10.1089/dna.2010.1181. 21476933
[5]
Soheila, K. Effects of tartrazine colorant on DNA structure. Clin. Biochem. 2011, 44, S232.
[6]
Soheila, K.; Sahar, H.Z. Thermodynamic study on the binding of tartrazine food additive to calf thymus DNA. Clin. Biochem. 2011, 44, S233.
[7]
Tanaka, T. Reproductive and neurobehavioural toxicity study of tartrazine administered to mice in the diet. Food Chem. Toxicol. 2006, 44, 179–187, doi:10.1016/j.fct.2005.06.011. 16087284
[8]
Tanaka, T.; Takahashi, O.; Oishi, S.; Ogata, A. Effects of tartrazine on exploratory behavior in a three-generation toxicity study in mice. Reprod. Toxicol. 2008, 26, 156–163, doi:10.1016/j.reprotox.2008.07.001. 18687399
[9]
Ward, N.I. Assessment of chemical factors in relation to child hyperactivity. J. Nutr. Environ. Med. 1997, 7, 333–342, doi:10.1080/13590849762466.
[10]
Mpountoukas, P.; Pantazaki, A.; Kostareli, E.; Christodoulou, P.; Kareli, D.; Poliliou, S.; Mourelatos, C.; Lambropoulou, V.; Lialiaris, T. Cytogenetic evaluation and DNA interaction studies of the food colorants amaranth, erythrosine and tartrazine. Food Chem. Toxicol. 2010, 48, 2934–2944, doi:10.1016/j.fct.2010.07.030. 20667460
[11]
Gao, Y.; Li, C.; Shen, J.; Yin, H.; An, X.; Jin, H. Effect of food azo dye tartrazine on learning and memory functions in mice and rats, and the possible mechanisms involved. J. Food Sci. 2011, 76, T125–T129, doi:10.1111/j.1750-3841.2011.02267.x. 22417523
[12]
Li, Y.; Wei, H.; Liu, R. A probe to study the toxic interaction of tartrazine with bovine hemoglobin at the molecular level. Lumin. J. Biol. Chem. Lumin. 2013, doi:10.1002/bio.2510.
[13]
Feng, F.; Zhao, Y.; Yong, W.; Sun, L.; Jiang, G.; Chu, X. Highly sensitive and accurate screening of 40 dyes in soft drinks by liquid chromatography-electrospray tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011, 879, 1813–1818, doi:10.1016/j.jchromb.2011.04.014.
[14]
Khanavi, M.; Hajimahmoodi, M.; Ranjbar, A.M.; Oveisi, M.R.; Ardekani, M.R.S.; Mogaddam, G. Development of a green chromatographic method for simultaneous determination of food colorants. Food Anal. Methods 2012, 5, 408–415, doi:10.1007/s12161-011-9259-4.
[15]
Minioti, K.S.; Sakellariou, C.F.; Thomaidis, N.S. Determination of 13 synthetic food colorants in water-soluble foods by reversed-phase high-performance liquid chromatography coupled with diode-array detector. Anal. Chim. Acta 2007, 583, 103–110, doi:10.1016/j.aca.2006.10.002. 17386533
[16]
Huang, S.T.; Shi, Y.; Li, N.B.; Luo, H.Q. Sensitive turn-on fluorescent detection of tartrazine based on fluorescence resonance energy transfer. Chem. Commun. 2012, 48, 747–749, doi:10.1039/c1cc15959c.
[17]
Nevado, J.J.B.; Flores, J.R.; Llerena, M.J.V.O. Simultaneous determination of tartrazine, riboflavine, curcumin and erythrosine by derivative spectrophotometry. Fresenius J. Anal. Chem. 1994, 350, 610–613, doi:10.1007/BF00323512.
[18]
Sahraei, R.; Farmany, A.; Mortazavi, S.S. A nanosilver-based spectrophotometry method for sensitive determination of tartrazine in food samples. Food Chem. 2013, 138, 1239–1242, doi:10.1016/j.foodchem.2012.11.029. 23411238
[19]
Ghoreishi, S.M.; Behpour, M.; Golestaneh, M. Simultaneous determination of sunset yellow and tartrazine in soft drinks using gold nanoparticles carbon paste electrode. Food Chem. 2012, 132, 637–641, doi:10.1016/j.foodchem.2011.10.103.
[20]
Medeiros, R.A.; Lourencao, B.C.; Rocha, R.C.; Fatibello, O. Simultaneous voltammetric determination of synthetic colorants in food using a cathodically pretreated boron-doped diamond electrode. Talanta 2012, 97, 291–297, doi:10.1016/j.talanta.2012.04.033. 22841082
[21]
Yang, X.F.; Qin, H.B.; Gao, M.M.; Zhang, H.J. Simultaneous detection of ponceat 4r and tartrazine in food using adsorptive stripping voltammetry on an acetylene black nanoparticle-modified electrode. J. Sci. Food Agric. 2011, 91, 2821–2825, doi:10.1002/jsfa.4527. 21725982
[22]
Gan, T.; Sun, J.; Wu, Q.; Jing, Q.; Yu, S. Graphene decorated with nickel nanoparticles as a sensitive substrate for simultaneous determination of sunset yellow and tartrazine in food samples. Electroanal 2013, doi:10.1002/elan.201300008.
[23]
Ghoreishi, S.M.; Behpour, M.; Golestaneh, M. Simultaneous voltammetric determination of brilliant blue and tartrazine in real samples at the surface of a multi-walled carbon nanotube paste electrode. Anal. Methods 2011, 3, 2842–2847, doi:10.1039/c1ay05327b.
[24]
Xing, Y.; Meng, M.; Xue, H.; Zhang, T.; Yin, Y.; Xi, R. Development of a polyclonal antibody-based enzyme-linked immunosorbent assay (elisa) for detection of sunset yellow fcf in food samples. Talanta 2012, 99, 125–131, doi:10.1016/j.talanta.2012.05.029. 22967531
[25]
Lei, Y.J.; Zhang, S.J.; Fang, L.Z.; Akash, M.S.H.; Shi, W.X.; Sun, K.D.; Xu, Y.C.; Chen, S.Q. A sensitive and specific enzyme immunoassay for detecting tartrazine in human urinary samples. Anal. Methods 2013, 5, 925–930, doi:10.1039/c2ay26121a.
[26]
Xu, Z.L.; Shen, Y.D.; Beier, R.C.; Yang, J.Y.; Lei, H.T.; Wang, H.; Sun, Y.M. Application of computer-assisted molecular modeling for immunoassay of low molecular weight food contaminants: A review. Anal. Chim. Acta. 2009, 647, 125–136, doi:10.1016/j.aca.2009.06.003. 19591697
[27]
Wang, Z.; Luo, P.; Cheng, L.; Zhang, S.; Shen, J. Hapten-antibody recognition studies in competitive immunoassay of alpha-zearalanol analogs by computational chemistry and pearson correlation analysis. J. Mol. Recognit. 2011, 24, 815–823, doi:10.1002/jmr.1121. 21812055
[28]
Zhang, M.C.; Hu, Y.R.; Liu, S.H.; Cong, Y.; Liu, B.L.; Wang, L. A highly sensitive enzyme-linked immunosorbent assay for the detection of dipropyl phthalate in plastic food contact materials. Food Agric. Immunol. 2013, 24, 165–177, doi:10.1080/09540105.2012.670615.
[29]
Li, L.; Zhou, Y.; Li, Y.S.; Feng, X.L.; Song, J.; Liu, Y.Y.; Gao, S.Q.; Zhang, Y.Y.; Li, Z.H.; Wang, G.M.; et al. Preparation of an antigen and development of a monoclonal antibody against mono-butyl phthalate (mbp). Food Agric. Immunol. 2013, 24, 193–202, doi:10.1080/09540105.2012.677010.
[30]
Temponi, M.; Kageshita, T.; Perosa, F.; Ono, R.; Okada, H.; Ferrone, S. Purification of murine igg monoclonal antibodies by precipitation with caprylic acid: Comparison with other methods of purification. Hybridoma 1989, 8, 85–95, doi:10.1089/hyb.1989.8.85. 2784406