全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Assessing Temporal Stability for Coarse Scale Satellite Moisture Validation in the Maqu Area, Tibet

DOI: 10.3390/s130810725

Keywords: temporal stability, representative mean soil moisture (RMSM), correlation, advance microwave scanning radiometer (AMSR-E), satellite validation

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study evaluates if the temporal stability concept is applicable to a time series of satellite soil moisture images so to extend the common procedure of satellite image validation. The area of study is the Maqu area, which is located in the northeastern part of the Tibetan plateau. The network serves validation purposes of coarse scale (25–50 km) satellite soil moisture products and comprises 20 stations with probes installed at depths of 5, 10, 20, 40, 80 cm. The study period is 2009. The temporal stability concept is applied to all five depths of the soil moisture measuring network and to a time series of satellite-based moisture products from the Advance Microwave Scanning Radiometer (AMSR-E). The in-situ network is also assessed by Pearsons’s correlation analysis. Assessments by the temporal stability concept proved to be useful and results suggest that probe measurements at 10 cm depth best match to the satellite observations. The Mean Relative Difference plot for satellite pixels shows that a RMSM pixel can be identified but in our case this pixel does not overlay any in-situ station. Also, the RMSM pixel does not overlay any of the Representative Mean Soil Moisture (RMSM) stations of the five probe depths. Pearson’s correlation analysis on in-situ measurements suggests that moisture patterns over time are more persistent than over space. Since this study presents first results on the application of the temporal stability concept to a series of satellite images, we recommend further tests to become more conclusive on effectiveness to broaden the procedure of satellite validation.

References

[1]  Rientjes, T.H.M.; Perera, B.U.J.; Haile, A.T.; Reggiani, P.; Muthuwatta, L.P. Regionalisation for lake level simulation: the case of lake Tana in the upper blue Nile, Ethiopia. Hydrol. Earth Syst. Sci. 2011, 15, 1167–1183.
[2]  Grayson, R.B.; Western, A.W.; Chiew, F.H.S.; Bl?schl, G. Preferred states in spatial soil moisture patterns: Local and nonlocal controls. Water Resour. Res. 1997, 33, 2897–2908.
[3]  Hawley, M.E.; Jackson, T.J.; McCuen, R.H. Surface soil moisture variation on small agricultural watersheds. J. Hydrol. 1983, 62, 179–200.
[4]  Engman, E.T.; Chauhan, N. Status of microwave soil moisture measurements with remote sensing. Remote Sens. Environ. 1995, 51, 189–198.
[5]  Rientjes, T.H.M.; Haile, A.T.; Fenta, A.A. Diurnal rainfall variability over the Upper Blue Nile Basin: A remote sensing based approach. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 311–325.
[6]  Manfreda, S.; McCabe, M.F.; Fiorentino, M.; Rodríguez-Iturbe, I.; Wood, E.F. Scaling characteristics of spatial patterns of soil moisture from distributed modelling. Adv. Water Resour. 2007, 30, 2145–2150.
[7]  Albergel, C.; de Rosnay, P.; Gruhier, C.; Munoz-Sabater, J.; Hasenauer, S.; Isaksen, L.; Kerr, Y.; Wagner, W. Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations. Remote Sens. Environ. 2012, 118, 215–226.
[8]  Draper, C.S.; Walker, J.P.; Steinle, P.J.; de Jeu, R.A.M.; Holmes, T.R.H. An evaluation of AMSR-E derived soil moisture over Australia. Remote Sens. Environ. 2009, 113, 703–710.
[9]  Jackson, T.J.; Cosh, M.H.; Bindlish, R.; Starks, P.J.; Bosch, D.D.; Seyfried, M.; Goodrich, D.C.; Moran, M.S.; Du, J.Y. Validation of advanced microwave scanning radiometer soil moisture products. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4256–4272.
[10]  Wagner, W.; Naeimi, V.; Scipal, K.; de Jeu, R.; Martinez-Fernandez, J. Soil moisture from operational meteorological satellites. Hydrogeol. J. 2007, 15, 121–131.
[11]  Gruhier, C.; de Rosnay, P.; Kerr, Y.; Mougin, E.; Ceschia, E.; Calvet, J.C.; Richaume, P. Evaluation of AMSR-E soil moisture product based on ground measurements over temperate and semi-arid regions. Geophys. Res. Lett. 2008, 35, doi:10.1029/2008GL033330.
[12]  Su, Z.; Wen, J.; Dente, L.; van der Velde, R.; Wang, L.; Ma, Y.; Yang, K.; Hu, Z. The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products. Hydrol. Earth Syst. Sci. 2011, 15, 2303–2316.
[13]  Dente, L.; Vekerdy, Z.; Wen, J.; Su, Z. Maqu network for validation of satellite-derived soil moisture products. Int. J. Appl. Earth Obs. Geoinf. 2012, 17, 55–65.
[14]  Jackson, T.J.; Hsu, A.Y.; van de Griend, A.; Eagleman, J.R. Skylab L-band microwave radiometer observations of soil moisture revisited. Int. J. Remote Sens. 2004, 25, 2585–2606.
[15]  Vinnikov, K.Y.; Robock, A.; Qiu, S.; Entin, J.K.; Owe, M.; Choudhury, B.J.; Hollinger, S.E.; Njoku, E.G. Satellite remote sensing of soil moisture in Illinois, United States. J. Geophys. Res. 1999, 104, 4145–4168.
[16]  Owe, M.; van de Griend, A.A.; Chang, A.T.C. Surface moisture and satellite microwave observations in semiarid southern Africa. Water Resour. Res. 1992, 28, 829–839.
[17]  Vachaud, G.; Passerat De Silans, A.; Balabanis, P.; Vauclin, M. Temporal stability of spatially measured soil water probability density function1. Soil Sci. Soc. Am. J. 1985, 49, 822–828.
[18]  Jacques, D.; Mohanty, B.; Timmerman, A.; Feyen, J. Study of time dependency of factors affecting the spatial distribution of soil water content in a field-plot. Phys. Chem. Earth Part B: Hydrol. Oceans Atmos. 2001, 26, 629–634.
[19]  Kachanoski, R.G.; de Jong, E. Scale dependence and the temporal persistence of spatial patterns of soil water storage. Water Resour. Res. 1988, 24, 85–91.
[20]  Goovaerts, P.; Chiang, C.N. Temporal persistence of spatial patterns for mineralizable nitrogen and selected soil properties. Soil Sci. Soc. Am. J. 1993, 57, 372–381.
[21]  Famiglietti, J.S.; Rudnicki, J.W.; Rodell, M. Variability in surface moisture content along a hillslope transect: Rattlesnake Hill, Texas. J. Hydrol. 1998, 210, 259–281.
[22]  Grayson, R.B.; Western, A.W. Towards areal estimation of soil water content from point measurements: Time and space stability of mean response. J. Hydrol. 1998, 207, 68–82.
[23]  Chen, D.; Engman, E.T.; Brutsaert, W. Spatial distribution and pattern persistence of surface soil moisture and temperature over prairie from remote sensing. Remote Sens. Environ. 1997, 61, 347–360.
[24]  Cosh, M.H.; Jackson, T.J.; Bindlish, R.; Prueger, J.H. Watershed scale temporal and spatial stability of soil moisture and its role in validating satellite estimates. Remote Sens. Environ. 2004, 92, 427–435.
[25]  Cosh, M.H.; Jackson, T.J.; Starks, P.; Heathman, G. Temporal stability of surface soil moisture in the Little Washita River watershed and its applications in satellite soil moisture product validation. J. Hydrol. 2006, 323, 168–177.
[26]  Starks, P.J.; Heathman, G.C.; Jackson, T.J.; Cosh, M.H. Temporal stability of soil moisture profile. J. Hydrol. 2006, 324, 400–411.
[27]  Martínez-Fernández, J.; Ceballos, A. Temporal stability of soil moisture in a large-field experiment in spain. Soil Sci. Soc. Am. J. 2003, 67, 1647–1656.
[28]  Brocca, L.; Melone, F.; Moramarco, T.; Morbidelli, R. Soil moisture temporal stability over experimental areas in Central Italy. Geoderma 2009, 148, 364–374.
[29]  Mohanty, B.P.; Skaggs, T.H. Spatio-temporal evolution and time-stable characteristics of soil moisture within remote sensing footprints with varying soil, slope, and vegetation. Adv. Water Resour. 2001, 24, 1051–1067.
[30]  Cosh, M.H.; Jackson, T.J.; Moran, S.; Bindlish, R. Temporal persistence and stability of surface soil moisture in a semi-arid watershed. Remote Sens. Environ. 2008, 112, 304–313.
[31]  Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the K?ppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644.
[32]  Dente, L.; Su, Z.; Wen, J. Validation of SMOS soil moisture products over the maqu and twente regions. Sensors 2012, 12, 9965–9986.
[33]  Owe, M.; de Jeu, R.; Holmes, T. Multisensor historical climatology of satellite-derived global land surface moisture. J. Geophys. Res. 2008, 113, F01002, doi:10.1029/2007JF000769.
[34]  Parinussa, R.M.; Meesters, A.G.C.A.; Liu, Y.Y.; Dorigo, W.; Wagner, W.; de Jeu, R.A.M. Error estimates for near-real-time satellite soil moisture as derived from the land parameter retrieval model. IEEE Geosci. Remote Sens. Lett. 2011, 8, 779–783.
[35]  Owe, M.; de Jeu, R.; Walker, J. A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1643–1654.
[36]  Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192.
[37]  Brocca, L.; Hasenauer, S.; Lacava, T.; Melone, F.; Moramarco, T.; Wagner, W.; Dorigo, W.; Matgen, P.; Martínez-Fernández, J.; Llorens, P.; et al. Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe. Remote Sens. Environ. 2011, 115, 3390–3408.
[38]  Entekhabi, D.; Reichle, R.H.; Koster, R.D.; Crow, W.T. Performance metrics for soil moisture retrievals and application requirements. J. Hydrometeorol. 2010, 11, 832–840.
[39]  Koster, R.D.; Guo, Z.; Yang, R.; Dirmeyer, P.A.; Mitchell, K.; Puma, M.J. On the nature of soil moisture in land surface models. J. Clim. 2009, 22, 4322–4335.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133