全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

A Dry Membrane Protection Technique to Allow Surface Acoustic Wave Biosensor Measurements of Biological Model Membrane Approaches

DOI: 10.3390/s130912392

Keywords: biosensor, Langmuir-Blodgett technique, membrane protection, SAW, trehalose

Full-Text   Cite this paper   Add to My Lib

Abstract:

Model membrane approaches have attracted much attention in biomedical sciences to investigate and simulate biological processes. The application of model membrane systems for biosensor measurements is partly restricted by the fact that the integrity of membranes critically depends on the maintenance of an aqueous surrounding, while various biosensors require a preconditioning of dry sensors. This is for example true for the well-established surface acoustic wave (SAW) biosensor SAM ?5 blue. Here, a simple drying procedure of sensor-supported model membranes is introduced using the protective disaccharide trehalose. Highly reproducible model membranes were prepared by the Langmuir-Blodgett technique, transferred to SAW sensors and supplemented with a trehalose solution. Membrane rehydration after dry incorporation into the SAW device becomes immediately evident by phase changes. Reconstituted model membranes maintain their full functionality, as indicated by biotin/avidin binding experiments. Atomic force microscopy confirmed the morphological invariability of dried and rehydrated membranes. Approximating to more physiological recognition phenomena, the site-directed immobilization of the integrin VLA-4 into the reconstituted model membrane and subsequent VCAM-1 ligand binding with nanomolar affinity were illustrated. This simple drying procedure is a novel way to combine the model membrane generation by Langmuir-Blodgett technique with SAW biosensor measurements, which extends the applicability of SAM ?5 blue in biomedical sciences.

References

[1]  Gronewold, T.M.A.; Baumgartner, A.; Quandt, E.; Famulok, M. Discrimination of single mutations in cancer-related gene fragments with a surface acoustic wave sensor. Anal. Chem. 2006, 78, 4865–4871.
[2]  Gronewold, T.M.A.; Schlecht, U.; Quandt, E. Analysis of proteolytic degradation of a crude protein mixture using a surface acoustic wave sensor. Biosens. Bioelectron. 2007, 22, 2360–2365.
[3]  L?nge, K.; Rapp, B.E.; Rapp, M. Surface acoustic wave biosensors: A review. Anal. Bioanal. Chem. 2008, 391, 1509–1519.
[4]  Schlesinger, M.; Simonis, D.; Schmitz, P.; Fritzsche, J.; Bendas, G. Binding between heparin and the integrin VLA-4. Thromb. Haemost. 2009, 102, 816–822.
[5]  Maftei, M.; Tian, X.; Manea, M.; Exner, T.E.; Schwanzar, D.; Arnim, C.A.F.; Przybylski, M. Interaction structure of the complex between neuroprotective factor humanin and Alzheimer's β-amyloid peptide revealed by affinity mass spectrometry and molecular modeling. J. Pept. Sci. 2012, 18, 373–382.
[6]  Schlesinger, M.; Schmitz, P.; Zeisig, R.; Naggi, A.; Torri, G.; Casu, B.; Bendas, G. The inhibition of the integrin VLA-4 in MV3 melanoma cell binding by non-anticoagulant heparin derivatives. Thromb. Res. 2012, 129, 603–610.
[7]  Gronewold, T.M.A. Surface acoustic wave sensors in the bioanalytical field: Recent trends and challenges. Anal. Chim. Acta 2007, 603, 119–128.
[8]  Gronewold, T.M.A.; Glass, S.; Quandt, E.; Famulok, M. Monitoring complex formation in the blood-coagulation cascade using aptamer-coated SAW sensors. Biosens. Bioelectron. 2005, 20, 2044–2052.
[9]  Johnsson, B.; L?f?s, S.; Lindquist, G.; Edstr?m, A.; Hillgren, R.-M.M.; Hansson, A. Comparison of methods for immobilization to carboxymethyl dextran sensor surfaces by analysis of the specific activity of monoclonal antibodies. J. Mol. Recognit. 1995, 8, 125–131.
[10]  Fischer, M.J.E. Amine coupling through EDC/NHS: A Practical Approach. In Surface Plasmon Resonance; de Mol, N.J., Fischer, M.J.E., Eds.; Humana Press: New York,NY, USA, 2010; pp. 55–73.
[11]  Engelman, D.M. Membranes are more mosaic than fluid. Nature 2005, 438, 578–580.
[12]  Deshayes, S.; Morris, M.C.; Divita, G.; Heitz, F. Interactions of primary amphipathic cell penetrating peptides with model membranes: Consequences on the mechanisms of intracellular delivery of therapeutics. Curr. Pharm. Des. 2005, 11, 3629–3638.
[13]  Mossman, K.; Groves, J. Micropatterned supported membranes as tools for quantitative studies of the immunological synapse. Chem. Soc. Rev. 2007, 36, 46–54.
[14]  Vankemmelbeke, M.; James, R.; Penfold, C.N. Membrane activities of colicin nuclease domains: Analogies with antimicrobial peptides. Biochem. Soc. Trans. 2012, 40, 1517–1521.
[15]  Wu, H.; Oliver, A.E.; Ngassam, V.N.; Yee, C.K.; Parikh, A.N.; Yeh, Y. Preparation, characterization, and surface immobilization of native vesicles obtained by mechanical extrusion of mammalian cells. Integr. Biol. 2012, 4, 685–692.
[16]  Oliver, A.E.; Parikh, A.N. Templating membrane assembly, structure, and dynamics using engineered interfaces. Biochim. Biophys. Acta 2010, 1798, 839–850.
[17]  Kristanc, L.; Svetina, S.; Gomi??ek, G. Effects of the pore-forming agent nystatin on giant phospholipid vesicles. Biochim. Biophys. Acta 2012, 1818, 636–644.
[18]  Faudry, E.; Perdu, C.; Attrée, I. Pore Formation by T3SS Translocators: Liposome leakage assay. In Bacterial Cell Surfaces; Delcour, A.H., Ed.; Humana Press: New York, NY, USA, 2013; pp. 173–185.
[19]  Andr?, J.; B?hling, A.; Gronewold, T.M.A.; Schlecht, U.; Perpeet, M.; Gutsmann, T. Surface acoustic wave biosensor as a tool to study the interaction of antimicrobial peptides with phospholipid and lipopolysaccharide model membranes. Langmuir ACS J. Surfaces Colloids 2008, 24, 9148–9153.
[20]  Schmies, G.; Lüttenberg, B.; Chizhov, I.; Engelhard, M.; Becker, A.; Bamberg, E. Sensory rhodopsin II from the haloalkaliphilic natronobacterium pharaonis: Light-activated proton transfer reactions. Biophys. J. 2000, 78, 967–976.
[21]  Schulte, A.; Ruamchan, S.; Khunkaewla, P.; Suginta, W. The outer membrane protein VhOmp of Vibrio harveyi: Pore-forming properties in black lipid membranes. J. Membr. Biol. 2009, 230, 101–111.
[22]  Girard-Egrot, A.P.; Blum, L.J. Langmuir-Blodgett Technique for Synthesis of Biomimetic Lipid Membranes. In Nanotechnology of Biomimemtic Membranes; Martin, D., Ed.; Springer: New York, NY, USA, 2007; pp. 23–74.
[23]  Harding, T.S. History of trehalose, its discovery and methods of preparation. Sugar 1923, 25, 476–478.
[24]  Madin, K.A.C.; Crowe, J.H. Anhydrobiosis in nematodes: Carbohydrate and lipid metabolism during dehydration. J. Exp. Zool. 1975, 193, 335–342.
[25]  Potts, M. Desiccation tolerance of prokaryotes. Microbiol. Rev. 1994, 58, 755–805.
[26]  Crowe, J.H.; Crowe, L.M.; Carpenter, J.F.; Wistrom, C.A. Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem. J. 1987, 242, 1–10.
[27]  Crowe, J.H.; Crowe, L.M.; Carpenter, J.F.; Rudolph, A.S.; Wistrom, C.A.; Spargo, B.J.; Anchordoguy, T.J. Interactions of sugars with membranes. Biochim. Biophys. Acta 1988, 947, 367–384.
[28]  Fedorov, M.V.; Goodman, J.M.; Nerukh, D.; Schumm, S. Self-assembly of trehalose molecules on a lysozyme surface: The broken glass hypothesis. Phys. Chem. Chem. Phys. 2011, 13, 2294–2299.
[29]  Crowe, L.M.; Crowe, J.H. Hydration-dependent hexagonal phase lipid in a biological membrane. Arch. Biochem. Biophys. 1982, 217, 582–587.
[30]  Crowe, J.H.; Crowe, L.M.; Chapman, D. Preservation of membranes in anhydrobiotic organisms: The role of trehalose. Science 1984, 223, 701–703.
[31]  Chen, C.; Han, D.; Cai, C.; Tang, X. An overview of liposome lyophilization and its future potential. J. Controll. Release 2010, 142, 299–311.
[32]  Horta, B.A.C.; Peri?-Hassler, L.; Hünenberger, P.H. Interaction of the disaccharides trehalose and gentiobiose with lipid bilayers: A comparative molecular dynamics study. J. Mol. Graph. Model. 2010, 29, 331–346.
[33]  Oliver, A.E.; Kendall, E.L.; Howland, M.C.; Sanii, B.; Shreve, A.P.; Parikh, A.N. Protecting, patterning, and scaffolding supported lipid membranes using carbohydrate glasses. Lab. Chip. 2008, 8, 892–897.
[34]  Christ, K.; Rüttinger, H.-H.; H?pfner, M.; Rothe, U.; Bendas, G. The detection of UV-induced membrane damages by a combination of two biosensor techniques. Photochem. Photobiol. 2005, 81, 1417–1423.
[35]  Christ, K.; Wiedemann, I.; Bakowsky, U.; Sahl, H.-G.; Bendas, G. The role of lipid II in membrane binding of and pore formation by nisin analyzed by two combined biosensor techniques. Biochim. Biophys. Acta 2007, 1768, 694–704.
[36]  Perpeet, M.; Glass, S.; Gronewold, T.; Kiwitz, A.; Malavé, A.; Stoyanov, I.; Tewes, M.; Quandt, E. SAW sensor system for marker-free molecular interaction analysis. Anal. Lett. 2006, 39, 1747–1757.
[37]  Hu, J.; Xiao, X.-D.; Salmeron, M. Scanning polarization force microscopy: A technique for imaging liquids and weakly adsorbed layers. Appl. Phys. Lett. 1995, 67, 476–478.
[38]  Bayer, E.A.; Wilchek, M. Application of avidin–biotin technology to affinity-based separations. J. Chromatogr. A 1990, 510, 3–11.
[39]  Johnson, J.P. Cell adhesion molecules in the development and progression of malignant melanoma. Cancer Metastasis Rev. 1999, 18, 345–357.
[40]  Sanz-Rodríguez, F.; Teixidó, J. VLA-4-dependent myeloma cell adhesion. Leuk. Lymphoma 2001, 41, 239–245.
[41]  Fritzsche, J.; Simonis, D.; Bendas, G. Melanoma cell adhesion can be blocked by heparin in vitro: Suggestion of VLA-4 as a novel target for antimetastatic approaches. Thromb. Haemost. 2008, 100, 1166–1175.
[42]  Chigaev, A.; Zwartz, G.; Graves, S.W.; Dwyer, D.C.; Tsuji, H.; Foutz, T.D.; Edwards, B.S.; Prossnitz, E.R.; Larson, R.S.; Sklar, L.A. α4β1 integrin affinity changes govern cell adhesion. J. Biol. Chem. 2003, 278, 38174–38182.
[43]  Knecht, S.; Ricklin, D.; Eberle, A.N.; Ernst, B. Oligohis-tags: Mechanisms of binding to Ni2+-NTA surfaces. J. Mol. Recognit. JMR 2009, 22, 270–279.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133