全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Currents Induced by Injected Charge in Junction Detectors

DOI: 10.3390/s130912295

Keywords: photo-detectors, particle-detectors, Ramo’s current, injected charge drift current

Full-Text   Cite this paper   Add to My Lib

Abstract:

The problem of drifting charge-induced currents is considered in order to predict the pulsed operational characteristics in photo-and particle-detectors with a junction controlled active area. The direct analysis of the field changes induced by drifting charge in the abrupt junction devices with a plane-parallel geometry of finite area electrodes is presented. The problem is solved using the one-dimensional approach. The models of the formation of the induced pulsed currents have been analyzed for the regimes of partial and full depletion. The obtained solutions for the current density contain expressions of a velocity field dependence on the applied voltage, location of the injected surface charge domain and carrier capture parameters. The drift component of this current coincides with Ramo’s expression. It has been illustrated, that the synchronous action of carrier drift, trapping, generation and diffusion can lead to a vast variety of possible current pulse waveforms. Experimental illustrations of the current pulse variations determined by either the rather small or large carrier density within the photo-injected charge domain are presented, based on a study of Si detectors.

References

[1]  Ramo, S. Currents induced by electron motion. Proc. Inst. Radio Eng. 1939, 27, 584–585.
[2]  Shockley, A. Currents to conductors induced by a moving point charge. J. Appl. Phys. 1938, 9, 635–636.
[3]  Goulding, F.S. Semiconductor detectors for nuclear spectrometry, I. Nucl. Instrum. Meth. 1966, 43, 1–54.
[4]  Martini, M.; Ottaviani, G. Ramo's theorem and the energy balance equations in evaluating the current pulse from semiconductor detectors. Nucl. Instrum. Meth. 1969, 67, 177–178.
[5]  Vass, D.G. The charge collection process in semiconductor radiation detectors. Nucl. Instrum. Meth. 1970, 86, 5–11.
[6]  Cavalleri, G.; Gatti, E.; Fabri, G.; Svelto, S. Extension of Ramo's theorem as applied to induced charge in semiconductor detectors. Nucl. Instrum. Meth. 1971, 92, 137–140.
[7]  De Visschere, P. The validity of Ramo's theorem. Solid State Electron. 1971, 33, 455–459.
[8]  Hamel, L.A.; Julien, M. Generalized demonstration of Ramo's theorem with space charge and polarization effects. Nucl. Instrum. Method. Phys. Res. A 2008, 597, 207–211.
[9]  Kotov, I.V. Currents induced by charges moving in semiconductor. Nucl. Instrum. Method. Phys. Res. A 2005, 539, 267–267.
[10]  Gatti, E.; Geraci, A. Considerations about Ramo's theorem extension to conductor media with variable dielectric constant. Nucl. Instrum. Method. Phys. Res. A 2004, 525, 623–625.
[11]  Eremin, V.; Strokan, N.; Verbitskaya, E.; Li, Z. Development of transient current and charge techniques for the measurement of effective net concentration of ionized charges (Neff) in the space charge region of p-n junction detectors. Nucl. Instrum. Method. Phys. Res. A 1996, 372, 388–398.
[12]  Leroy, C.; Roy, P.; Casse, G.; Glaser, M.; Grigoriev, E.; Lemeilleur, F. Study of charge transport in non-irradiated and irradiated silicon detectors. Nucl. Instrum. Method. Phys. Res. A 1999, 426, 99–108.
[13]  H?rk?nen, J.; Eremin, V.; Verbitskaya, E.; Czellar, S.; Pusa, P.; Li, Z.; Niinikoski, T.O. The cryogenic transient current technique (C-TCT) measurement setup of CERN RD39 Collaboration. Nucl. Instrum. Method. Phys. Res. A 2007, 581, 347–350.
[14]  Gaubas, E.; Ceponis, T.; Vaitkus, J.; Raisanen, J. Carrier drift and diffusion characteristics of Si particle detectors measured in situ during 8 MeV protons irradiation. Lith. J. Phys. 2011, 51, 351–358.
[15]  Blood, P.; Orton, J.W. The Electrical Characterization of Semiconductors: Majority Carriers and Electron States; Academic Press: London, UK, 1992.
[16]  WolframAlpha. Available online: http://www.wolframalpha.com (accessed on 25 July 2013).
[17]  Kamke, E. Differrentialgleichungen. I-Gevonliche Differrentialgleichungen (Handbook); Akademische Verlagsgesellschaft Geest & Portig: Leipzig, Deutsche Demokratische Republik, 1959.
[18]  Gaubas, E.; Ceponis, T.; Vaitkus, J.; Raisanen, J. Study of cariations of the carrier recombination and charge transport parameters during proton irradiation of silicon pin diode structures. AIP Adv. 2011, 1, 022143:1–022143:13.
[19]  Bonch-Bruyevich, V.L.; Kalashnikov, S.G. Semiconductor Physics (In Russian); Nauka: Moscow, Russia, 1977.
[20]  Gaubas, E.; Vaitkus, J.; Simoen, E.; Claeys, C.; Vanhellemont, J. Excess carrier cross-sectional technique for determination of the surface recombination velocity. Mater. Sci. Semicond. Process 2001, 4, 125–131.
[21]  Gaubas, E. Transient absorption techniques for investigation of recombination properties in semiconductor materials. Lith. J. Phys. 2003, 43, 145–165.
[22]  Luke, K.L.; Cheng, L.-J. Analysis of the interaction of a laser pulse with a silicon wafer: determination of bulk lifetime and surface recombination velocity. J. Appl. Phys. 1987, 61, 2282–2293.
[23]  Spieler, H. Semiconductor Detector Systems; Oxford University Press: NY, USA, 2005.
[24]  Lutz, G. Semiconductor Radiation Detectors—Device Physics; Springer: Heidelberg, Germany, 2007.
[25]  Baliga, B.Y. Power Semiconductor Devices; PWS Publishing Company: MA, USA, 1995.
[26]  Mott, N.F.; Gurney, R.W. Electronic Processes in Ionic Crystals, 2nd ed. ed.; Dover Publications: NY, USA, 1964.
[27]  Lampert, M. A.; Mark, P. Current Injection in Solids; Academic Press: NY, USA, 1970.
[28]  Gaubas, E.; Ceponis, T.; Jasiunas, A.; Uleckas, A.; Vaitkus, J.; Cortina, E.; Militaru, O. Correlated evolution of barrier capacitance charging, generation and drift currents and of carrier lifetime in Si structures during 25 MeV neutron irradiation. Appl. Phys. Lett. 2012, 101, 232104:1–232104:3.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133