A visible light communication (VLC) system using an organic bulk heterojunction photodetector (OPD) is presented. The system has been successfully proven indoors with an audio signal. The emitter consists of three commercial high-power white LEDs connected in parallel. The receiver is based on an organic photodetector having as active layer a blend of poly(3-hexylthiophene) (P3HT) and phenyl C61-butyric acid methyl ester (PCBM). The OPD is opto-electrically characterized, showing a responsivity of 0.18 A/W and a modulation response of 790 kHz at ?6 V.
References
[1]
Shirakawa, H.; Louis, E.J.; MacDiarmid, A.G.; Chiang, C.K.; Heeger, A.J. Synthesis of electrically conducting organic polymers-halogen derivatives of polyacetylene (CH). J. Chem. Soc. Chem. Commun. 1977, 16, 578–580.
[2]
Krebs, F.C.; Gevorgyan, S.A.; Alstrup, J. A roll-to-roll process to flexible polymer solar cells: Model studies, manufacture and operational stability studies. J. Mater. Chem. 2009, 19, 5442–5451.
[3]
Krebs, F.C. Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Sol. Energy Mat. Sol. Cells 2009, 93, 394–412.
[4]
Barbaro, M.; Caboni, A.; Cosseddu, P.; Mattana, G.; Bonfiglio, A. Active devices based on organic semiconductors for wearable applications. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 758–766.
[5]
Reyes-Reyes, M.; Kim, K.; Dewald, J.; Lopez-Sandoval, J.R.; Avadhanula, A.; Curran, S.; Carroll, D.L. Meso-structure formation for enhanced organic photovoltaic cells. Org. Lett. 2005, 7, 5749–5752.
[6]
Ramuz, M.; Bürgi, L.; Winnewisser, C.; Seitz, P. High sensitivity organic photodiodes with low dark currents and increased lifetimes. Org. Electron. 2008, 9, 369–376.
[7]
Salamandra, L.; Susanna, G.; Penna, S.; Brunetti, F.; Reale, A. Time-resolved response of polymer bulk-heterojunction photodetectors. IEEE Photon. Technol. Lett. 2011, 23, 780–782.
[8]
Arredondo, B.; de Dios, C.; Vergaz, R.; del Pozo, G.; Romero, B. High-Bandwidth organic photodetector analyzed by impedance spectroscopy. IEEE Photon. Technol. Lett. 2012, 24, 1868–1871.
[9]
Punke, M.; Valouch, S.; Kettlitz, S.W.; Christ, N.; Gartner, C.; Gerken, M.; Lemmer, U. Dynamic characterization of organic bulk heterojunction photodetectors. Appl. Phys. Lett. 2007, 91, doi:10.1063/1.2772198.
[10]
Valouch, S.; H?nes, C.; Kettliz, S.W.; Christ, N.; Do, H.; Klein, M.F.G.; Kalt, H.; Colsmann, A.; Lemmer, U. Solution processed small molecule organic interfacial layers for low dark current polymer photodiodes. Org. Electron. 2012, 13, 2727–2732.
[11]
Chuang, S.-T.; Chien, S.-C.; Chen, F.-C. Extended spectral response in organic photomultiple photodetectors using multiple near-infrared dopants. Appl. Phys. Lett. 2012, 100, 013309.
Yao, Y.; Liang, Y.; Shrotriya, V.; Xiao, S.; Yu, L.; Yang, Y. Plastic near-infrared photodetectors utilizing low band gap polymer. Adv. Mater. 2007, 19, 3979–3983.
[14]
Punke, M.; Valouch, S.; Kettlitz, S.W.; Gerken, M.; Lemmer, U. Optical data link employing organic light-emitting diodes and organic photodiode as optoelectronic component. J. Lightw. Techonol. 2008, 26, 816–823.
[15]
Daum, W.; Krauser, J.; Zamzow, P.E.; Ziemann, O. POF Polymer Optical Fibers for Data Communication; Springer-Verlag: Berlin, Germany, 2002.
[16]
Dong, G.; Hu, Y.; Jiang, C.; Wang, L.; Qiu, Y. Organic photo-couplers consisting of organic light-emitting diodes and organic photo-resistors. Appl. Phys. Lett. 2006, 88, 051110.
[17]
Ohmori, Y.; Kajii, H.; Kaneko, M.; Yoshino, K.; Ozaki, M.; Fujii, A.; Hikita, M.; Takenaka, H.; Taneda, T. Realization of polymer optical integrated devices utilizing organic light-emitting diodes and photode- tectors fabricated on a polymer waveguide. IEEE J. Sel. Topics Quant. Electron. 2004, 10, 70–78.
[18]
An, K.H.; O'Connor, B.; Pipe, K.P.; Zhao, Y.; Shtein, M. Scanning optical probe microscopy with submicrometer resolution using an organic photodetector. App. Phys. Lett. 2008, 93, 033311.
[19]
Clark, J.; Lanzani, G. Organic photonics for communications. Nat. Phot. 2010, 4, 438–446.
[20]
Komine, T.; Nakagawa, M. Fundamental analysis for visible-light communications system using LED lights. IEEE Trans. Consum. Electron. 2004, 50, 100–107.
[21]
Visible Light Communications Consortium, VLCC. Available online: http://www.vlcc.net/ (accessed on 11 September 2013).
[22]
WPAN Visual Light Communication Interest Group (UGvlc), IEEE 802.15. Available online: http://www.ieee802.org/15/pub/IGvlc.html (accessed on 11 September 2013).
[23]
Wada, M.; Yebdo, T.; Fujii, T.; ad Tanimoto, M. Road to Vehicle Communications Using LED Traffic Light. Proceedings of the IEEE Intelligent Vehicles Symposium Proceedings, Las Vegas, NV, USA, 6–8 June 2005; Volume 6, p. 8.
[24]
Park, S.-B.; Jung, D.K.; Shin, H.S.; Shin, D.J.; Hyun, Y.-J.; Lee, K.; Oh, Y.J. Information Broadcasting System Based on Visible Light Signboard. Proceedings of the Wireless and Optical Communications, Montreal, QC, Canada, 30 May–1 June 2007.
[25]
Le-Minh, H.; Zeng, L.; O'Brien, D.C.; Bouchet, O.; Randel, S.; Walewski, J.; Borges, J.A.R.; Langer, K.-D.; Grubor, J.G.; Lee, K.; et al. Short Range Visible Light Communications. Proceedings of the Wireless World Research Forum, Chenai, Indian; 2007.
[26]
Liu, H.-S.; Pang, G. Positioning beacon system using digital camera and LEDs. IEEE Trans. Veh. Technol. 2003, 52, 406–419.
[27]
IEEE Standard for Local and Metropolitan Area Networks–Part 15.7: Short-Range Wireless Optical Communication Using Visible Light. IEEE Standard 802.15.7–2011; IEEE: New York, NY, USA, 2011.
[28]
Vucic, J.; Kottke, C.; Nerreter, S.; Langer, K.-D.; Walewski, J.W. 513 Mbit/s visible light communications link based on DMT- modulation of a white LED. J. Lightw. Technol. 2010, 28, 3512–3518.
[29]
Cossu, G.; Khalid, A.M.; Chourdhury, P.; Corsini, R.; Ciaramella, E. 3,4 Gbit/s visible optical wireless transmission base don RGB LED. Opt. Express 2012, 20, B501.
[30]
Grancini, G.; Polli, D.; Fazzi, D.; Cabanillas-Gonzalez, J.; Cerullo, G.; Lanzani, G. Transient absorption imaging of P3HT:PCBM photovoltaic blend: Evidence for interfacial charge transfer state. J. Phys. Chem. Lett. 2011, 2, 1099–1105.
[31]
Shrotriya, V.; Ouyang, J.; Tseng, R.J.; Li, G.; Yang, Y. Absorption spectra modification in poly(3-hexylthiophene):methanofullerene blend thin films. Chem. Phys. Lett. 2005, 411, 138–143.
[32]
Wang, Z.; Zhong, W.-D.; Yu, C.; Chen, J.; Po Shin Francois, C.; Chen, W. Performance of dimming control scheme in visible light communication system. Opt. Express 2012, 20, 18861.
[33]
Mouser Electronics. Available on line: http://es.mouser.com/ProductDetail/Seoul-Semiconductor/W11492/?qs=tAn5ob3kyLK9GSNAy1XFrjgUvDwcUtof (accessed on 10 September 2013).
Senior, J.M. Optical Fiber Communications. Principles and Practice, 2nd ed. ed.; Prentice Hall International Series in Optoelectronics; Pearson Education: Edinburgh Gate, Harlow, Essex, UK, 1992.
[36]
O'Brien, D.C.; Zeng, L.; Le-Minh, H.; Faulkner, G.; Walewski, J.W.; Randel, S. Visible Light Communications: Challenges and Possibilities. Proceedings of the IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, Cannes, France, 15–18 September 2008; pp. 1–5.