全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Fast Thermal Calibration of Low-Grade Inertial Sensors and Inertial Measurement Units

DOI: 10.3390/s130912192

Keywords: MEMS inertial sensors, IMU, thermal calibration, turntable, temperature chamber

Full-Text   Cite this paper   Add to My Lib

Abstract:

The errors of low-cost inertial sensors, especially Micro-Electro Mechanical Systems (MEMS) ones, are highly dependent on environmental conditions such as the temperature. Thus, there is a need for the development of accurate and reliable thermal compensation models to reduce the impact of such thermal drift of the sensors. Since the conventional thermal calibration methods are typically time-consuming and costly, an efficient thermal calibration method to investigate the thermal drift of a full set of gyroscope and accelerometer errors ( i.e., biases, scale factor errors and non-orthogonalities) over the entire temperature range in a few hours is proposed. The proposed method uses the idea of the Ramp method, which removes the time-consuming process of stabilizing the sensor temperature, and addresses its inherent problems with several improvements. We change the temperature linearly for a complete cycle and take a balanced strategy by making comprehensive use of the sensor measurements during both heating and cooling processes. Besides, an efficient 8-step rotate-and-static scheme is designed to further improve the calibration accuracy and efficiency. Real calibration tests showed that the proposed method is suitable for low-grade IMUs and for both lab and factory calibration due to its efficiency and sufficient accuracy.

References

[1]  El-Sheimy, N. An Overview of Mobile Mapping Systems. Proceedings of American Society for Photogrammetry and Remote Sensing Annual Conference (ASPRS), Cairo, Egypt, 16–21 April 2005.
[2]  Titterton, D.; Weston, J.L. Strapdown Inertial Navigation Technology, 2nd ed. ed.; American Institute of Aeronautics and Astronomy Press: Reston, VA, USA, 2004.
[3]  Niu, X.; Nassar, S.; El-Sheimy, N. An accurate land-vehicle mems IMU/GPS navigation system using 3D auxiliary velocity updates. J. Inst. Navig. 2007, 54, 177–188.
[4]  Chen, K.; Liu, C. The Performance Evaluation of Low Cost MEMS IMU/GPS Integrated Positioning and Orientation Systems Using Novel DBPNNs Embedded Fusion Algorithms. Proceedings of the 24th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2011), Portland, OR, USA, 20–23 September 2011; pp. 979–993.
[5]  El-Sheimy, N. Inertial Techniques and INS/DGPS Integration. In Engo 623-Course Notes; Department of Geomatics Engineering, University of Calgary: Calgary, AB, Canada, 2006.
[6]  Aggarwal, P.; Syed, Z.F.; Niu, X.; El-Sheimy, N. A standard testing and calibration procedure for low cost mems inertial sensors and units. J. Navigation 2008, 61, 323–336.
[7]  Shcheglov, K.; Evans, C.; Gutierrez, R.; Tang, T.K. Temperature Dependent Characteristics of the JPL Silicon MEMS Gyroscope. Proceedings of IEEE Aerospace Conference Proceedings, Big Sky, MT, USA, 18–25 March 2000; pp. 403–411.
[8]  Syed, Z.F.; Aggarwal, P.; Goodall, C.; Niu, X.; El-Sheimy, N. A new multi-position calibration method for MEMS inertial navigation systems. Meas. Sci. Technol. 2007, 18, doi:10.1088/0957-0233/18/7/016.
[9]  Fong, W.T.; Ong, S.K.; Nee, A. Methods for in-field user calibration of an inertial measurement unit without external equipment. Meas. Sci. Technol. 2008, 19, doi:10.1088/0957-0233/19/8/085202.
[10]  Nieminen, T.; Kangas, J.; Suuriniemi, S.; Kettunen, L. An enhanced multi-position calibration method for consumer-grade inertial measurement units applied and tested. Meas. Sci. Technol. 2010, 21, doi:10.1088/0957-0233/21/10/105204.
[11]  Zhang, H.; Wu, Y.; Wu, W.; Wu, M.; Hu, X. Improved multi-position calibration for inertial measurement units. Meas. Sci. Technol. 2010, 21, doi:10.1088/0957-0233/21/1/015107.
[12]  Li, Y.; Niu, X.; Zhang, Q.; Zhang, H.; Shi, C. An in situ hand calibration method using a pseudo-observation scheme for low-end inertial navigation units. Meas. Sci. Technol. 2012, 13, doi:10.1088/0957-0233/23/10/105104.
[13]  Hou, H.; El-Sheimy, N. Inertial Sensors Errors Modeling Using Allan Variance. Proceedings of the 16th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS/GNSS 2003), Portland, OR, USA, 9–12 September 2003; pp. 2860–2867.
[14]  InvenSense Inc. Temperature Compensating the IDG Series Gyroscopes. 2008. Available online: www.invensense.com (accessed on 3 January 2013).
[15]  Bhatt, D.; Aggarwal, P.; Bhattacharya, P.; Devabhaktuni, V. An enhanced mems error modeling approach based on nu-support vector regression. Sensors 2012, 12, 9448–9466.
[16]  El-Diasty, M.; Pagiatakis, S. A rigorous temperature-dependent stochastic modelling and testing for mems-based inertial sensor errors. Sensors 2009, 9, 8473–8489.
[17]  Naranjo, C.C.M. Analysis and Modeling of MEMS Based Inertial Sensors. M.S. Thesis, School of Electrical Engineering, Kungliga Tekniska Hgskolan, Stockholm, Sweden, 2008.
[18]  El-Diasty, M.; El-Rabbany, A.; Pagiatakis, S. Temperature variation effects on stochastic characteristics for low cost MEMS-based inertial sensor error. Meas. Sci. Technol. 2007, 18, 3321–3328.
[19]  Abdel-Hamid, W. An ANFIS-Based Modeling of Thermal Drift of MEMS-Based Inertial Sensors. Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004), Long Beach, CA, USA, 21–24 September 2004; pp. 784–791.
[20]  Aggarwal, P.; Syed, Z.; Niu, X.; El-Sheimy, N. Cost-Effective Testing and Calibration of Low Cost MEMS Sensors for Integrated Positioning, Navigation and Mapping Systems. Proceedings of XXIII FIG Congress, Munich, Germany, 8–13 October 2006.
[21]  Abdel-Hamid, W.; El-Sheimy, N.; Lachapelle, G. Thermal and Noise Characteristics of MEMS Inertial Sensors. Proceedings of the 2003 National Technical Meeting of The Institute of Navigation, Anaheim, CA, USA, 22–24 January 2003; pp. 641–648.
[22]  Berman, Z. Inertial Sensors: Further Developments in Low-Cost Calibration and Testing. Proceedings of IEEE /ION Position Location and Navigation Symposium (PLANS), Myrtle Beach, SC, USA, 23–26 April 2012; pp. 837–848.
[23]  Berman, Z. Inertial Sensors-A New Approach for Low Cost Calibration and Testing. Proceedings of Inertial Sensors and Systems, Karlsruhe, Germany, 20 Sept 2011.
[24]  Li, Y.; Niu, X.J.; Zhang, H.P. An IMU Calibration Method Using Simple Machinary and the Comprehensive Error Analysis (in Chinese). Proceedings of China Satellite Navigation Conference (CSNC), Shanghai, China, 18–21 May 2011; pp. 1426–1433.
[25]  Maybeck, P.S. Stochastic Models, Estimation, and Control; Academic Press: New York, NY, USA, 1982.
[26]  Xsens. MTi-G GPS-aided MEMS-Based Attitude and Heading Reference System (AHRS). Available online: http://www.xsens.com/en/general/mti-g (accessed on 23 January 2011).
[27]  NAV Technology Co., Ltd. NV-IMU100 Inertial Measurement Units. Available online: http://www.nav.cn/UpFile/2009922153819.pdf (accessed on 23 January 2011).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133