In this study, a miniaturized high fundamental frequency quartz crystal microbalance (QCM) is fabricated for sensor applications using a wet etching technique. The vibration area is reduced in the fabrication of the high frequency QCM with an inverted mesa structure. To reduce the complexity of the side wall profile that results from anisotropic quartz etching, a rectangular vibration area is used instead of the conventional circular structure. QCMs with high Q values exceeding 25,000 at 47 MHz, 27,000 at 60 MHz, 24,000 at 73 MHz and 25,000 at 84 MHz are fabricated on 4 × 4 mm 2 chips with small vibration areas of 1.2 × 1.4 mm 2. A PMMA-based flow cell is designed and manufactured to characterize the behavior of the fabricated QCM chip in a liquid. Q values as high as 1,006 at 47 MHz, 904 at 62 MHz, 867 at 71 MHz and 747 at 84 MHz are obtained when one side of the chip is exposed to pure water. These results show that fabricated QCM chips can be used for bio- and chemical sensor applications in liquids.
References
[1]
Sauerbrey, G.Z. The use of quartz oscillators for weighing thin films and for microweighing. Z. Phys. 1959, 155, 206–222.
[2]
Lin, Z.; Yip, C.M.; Joseph, I.S.; Ward, M.D. Operation of an ultrasensitive 30-MHz quartz crystal microbalance in liquids. Anal. Chem. 1993, 65, 1546–1551.
[3]
Zimmermann, B.; Luchlum, R.; Hauptmann, P.; Rabe, J.; Büttgenbach, S. Electrical characterization of high-frequency thickness-shear-mode resonators by impedance analysis. Sens. Actuators B 2001, 76, 47–57.
[4]
Rabe, J.; Büttgenbach, S.; Schr?der, J.; Hauptmann, P. Monolithic miniaturized quartz microbalance array and its application to chemical sensor systems for liquids. IEEE Sens. J. 2003, 3, 361–368.
[5]
Michalzik, M.; Wilke, R.; Büttgenbach, S. Miniaturized QCM-based flow system for immonosensor application in liquid. Sens. Actuators B 2005, 111–112, 410–415.
[6]
Sagmeister, B.P.; Graz, I.M.; Schw?diauer, R.; Gruber, H.; Bauer, S. User-friendly, miniature biosensor flow cell for fragile high fundamental frequency quartz crystal resonators. Biosens. Bioelectron. 2009, 24, 2643–2648.
[7]
Lederer, T.; Stehrer, B.P.; Bauer, S.; Jakoby, B.; Hiler, W. Utilizing a high fundamental frequency quartz crystal resonator as a biosensor in a digital microfluidic platform. Sens. Actuators A 2011, 172, 161–168.
[8]
Williams, R.D.; Upadhyayula, A.K.; Bhethanabotla, V.R. High frequency thickness shear mode devices for organic vapor sensing. Sens. Actuators B 2007, 122, 635–643.
[9]
Abe, T.; Hung, V.N.; Esashi, M. Inverted mesa-type quartz crystal resonators fabricated by deep-reactive ion etching. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2006, 53, 1234–1236.
Kao, P.; Doerner, S.; Schneider, T.; Allara, D. A micromachined quartz resonator array for biosensing applications. J. Microelectromech. Syst. 2009, 18, 522–530.
[12]
Kao, P.; Patwardhan, A.; Allara, D.; Tadigadapa, S. Human serum albumin adsorption study on 62 MHz miniaturized quartz gravimetric sensors. Anal. Chem. 2008, 80, 5930–5936.
[13]
Iwata, H. Miniaturized ultrahigh frequency fundamental quartz resonators. IEICE Electron. Express 2004, 1, 346–351.
[14]
Kao, P.; Allara, D.; Tadigadapa, S. Fabrication and performance characteristics of high-frequency micromachined bulk acoustic wave quartz resonator arrays. Meas. Sci. Technol. 2009, 20, 124007.
[15]
Qi, K.; Qi, Y.; Zhang, P.; Shen, D. Improve the signal-to-noise ratio of a quartz crystal microbalance in an impedance analysis method. Talanta 2007, 72, 1474–1480.
[16]
Karousos, N.G.; Reddy, S.M. Determination of 4-aminophenol using the quartz crystal microbalance sensor. Analyst 2002, 127, 368–372.