全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Strontium-Doped Hematite as a Possible Humidity Sensing Material for Soil Water Content Determination

DOI: 10.3390/s130912070

Keywords: hematite, strontium hexaferrite, humidity sensor, soil water content determination

Full-Text   Cite this paper   Add to My Lib

Abstract:

The aim of this work is to study the sensing behavior of Sr-doped hematite for soil water content measurement. The material was prepared by solid state reaction from commercial hematite and strontium carbonate heat treated at 900 °C. X-Ray diffraction, scanning electron microscopy and mercury intrusion porosimetry were used for microstructural characterization of the synthesized powder. Sensors were then prepared by uniaxially pressing and by screen-printing, on an alumina substrate, the prepared powder and subsequent firing in the 800–1,000 °C range. These sensors were first tested in a laboratory apparatus under humid air and then in an homogenized soil and finally in field. The results evidenced that the screen printed film was able to give a response for a soil matric potential from about 570 kPa, that is to say well below the wilting point in the used soil.

References

[1]  WWAP (World Water Assessment Programme). The United Nations World Water Development Report 2: State of the Resource: Quantity. UNESCO: Paris, France, 2012; pp. 381–400. Available online: http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/wwdr/wwdr4–2012/ (accessed on 21 July 2013).
[2]  WWAP (World Water Assessment Programme). The United Nations World Water Development Report 4: Managing Water under Uncertainty and Risk. UNESCO: Paris, France, 2012; pp. 22–43. Available online: http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/wwdr/wwdr4–2012 (accessed on 21 July 2013).
[3]  Or, D.; Wraith, J.M. Soil Water Content and Water Potential Relationships. In Soil Physics Companion, 2nd ed.; Warrick, A.W., Ed.; CRC Press LLC: Boca Raton, FL, USA, 2002; pp. 43–84.
[4]  Charlesworth, P. Soil Water Monitoring, an Information Package. In Irrigation Insights. No. 1, 2nd ed.; Currey, A., Ed.; Naturally Resourceful Pty Ltd: Lismore, Australia, 2005; pp. 1–96.
[5]  Alven?s, G.; Jansson, P.E. Model for evaporation, moisture and temperature of bare soil: calibration and sensitivity analysis. Agric. For. Meteorol. 1997, 88, 47–56.
[6]  Fabregat-Santiago, F.; Ferriols, N.S.; Garcia-Belmonte, G.; Bisquert, J. Determination of the humidity of soil by monitoring the conductivity with indium tin oxide glass electrodes. Appl. Phys. Lett. 2002, 80, 2785–2787.
[7]  Albrecht, B.A.; Benson, C.H.; Beuermann, S. Polymer capacitance sensors for measuring soil gas humidity in drier soil. ASTM Geotech. Test. J. 2003, 26, 3–11.
[8]  Carullo, A.; Parvis, M.; Vallan, A. Water Content Measurement in Granular Materials Using Ultrasonic Waves. Proceedings of the IEEE Instrumentation & Measurement Technology Conference, Sensing, Processing, Networking, Ottawa, ON, Canada, 19–21 May 1997; pp. 1246–1251.
[9]  Traversa, E. Ceramic sensors for humidity detection: the state-of-the-art and future developments. Sens. Actuators B: Chem. 1995, 23, 135–156.
[10]  Kulwicki, B.M. Humidity sensors. J. Am. Ceram. Soc. 1991, 74, 697–708.
[11]  Seiyama, T.; Yamazoe, N.; Arai, H. Ceramic humidity sensors. Sens. Actuator 1983, 4, 85–96.
[12]  Bonnet, J.P.; Onillon, M.; Santilli, C.V. Influence of the powder morphology on the electrical properties of α-Fe2O3ceramics. Silica. Ind. 1989, 7–8, 109–112.
[13]  Suri, K.; Annapoorni, S.; Sarkar, A.K.; Tandon, R.P. Gas and humidity sensors based on iron oxide-polypyrrole nanocomposites. Sens. Actuators B: Chem. 2002, 81, 277–282.
[14]  Neri, G.; Bonavita, A.; Galvagno, S.; Siciliano, P.; Capone, S. CO and NO2 sensing properties of doped-Fe2O3 thin films prepared by LPD. Sens. Actuators B: Chem. 2002, 82, 40–47.
[15]  Tulliani, J.M.; Baroni, C.; Lopez, C.; Dessemond, L. New NOx sensors based on hematite doped with alkaline and alkaline-earth elements. J. Eur. Ceram. Soc. 2011, 31, 2357–2364.
[16]  Debliquy, M.; Baroni, C.; Boudiba, A.; Tulliani, J.M.; Olivier, M.; Zhang, C. Sensing characteristics of hematite and barium oxide doped hematite films towards ozone and nitrogen dioxide. Proced. Eng. 2011, 25, 219–222.
[17]  Pelino, M.; Colella, C.; Cantalini, C.; Faccio, M.; Ferri, G.; D'Amico, A. Microstructure and electrical properties of an α-hematite ceramic humidity sensor. Sens. Actuators B: Chem. 1992, 7, 464–469.
[18]  Traversa, E.; Gnappi, G.; Montenero, A.; Gusmano, G. Ceramic thin films by sol gel processing as novel materials for integrated humidity sensors. Sens. Actuators B: Chem. 1996, 31, 59–70.
[19]  Shimizu, Y.; Arai, H.; Seiyama, T. Theoretical studies on the impedance-humidity characteristics of ceramic humidity sensors. Sens. Actuator 1985, 7, 11–22.
[20]  Gusmano, G.; Montesperelli, G.; Morten, B.; Prudenziati, M.; Pumo, A.; Traversa, E. Thick films of MgFe2O4 for humidity sensors. J. Mater. Process. Technol. 1996, 56, 589–599.
[21]  Rezlescu, N.; Doroftei, C.; Rezlescu, E.; Popa, P.D. Structure and humidity sensitive electrical properties of the Sn4+ and/or Mo6+ substituted Mg ferrite. Sens. Actuators B: Chem. 2006, 115, 589–595.
[22]  Shah, J.; Kotnala, R.K.; Singh, B.; Kishan, H. Microstructure-dependent humidity sensitivity of porous MgFe2O4–CeO2 ceramic. Sens. Actuators B: Chem. 2007, 128, 306–311.
[23]  Neri, G.; Bonavita, A.; Galvagno, S.; Pace, C.; Patanè, S.; Arena, A. Humidity sensing properties of Li–iron oxide based thin films. Sens. Actuators B: Chem. 2001, 73, 89–94.
[24]  Tulliani, J.M.; Bonville, P. Influence of the dopants on the electrical resistance of hematite-based humidity sensors. Ceram. Int. 2005, 31, 507–514.
[25]  Neri, G.; Bonavita, A.; Galvagno, S.; Donato, N.; Caddemi, A. Electrical characterization of Fe2O3humidity sensors doped with Li+, Zn2+and Au3+ions. Sens. Actuators B: Chem. 2005, 111–112, 71–77.
[26]  Neri, G.; Bonavita, A.; Milone, C.; Pistone, A.; Galvagno, S. Gold promoted Li–Fe2O3 thin films for humidity sensors. Sens. Actuators B: Chem. 2003, 92, 326–330.
[27]  Rezlescu, E.; Rezlescu, N.; Popa, P.D. Fine-grained MgCu ferrite with ionic substitutions used as humidity sensor. J. Magn. Magn. Mater. 2005, 290–,291, 1001–1004.
[28]  Kotnala, R.K.; Shah, J.; Singh, B.; Kishan, H.; Singh, S.; Dhawan, S.K.; Sengupta, A. Humidity response of Li-substituted magnesium ferrite. Sens. Actuators B: Chem. 2008, 129, 909–914.
[29]  Zhang, J.L.; Lu, Y.D.; Wu, G.B.; Li, B.R. Electrical conduction of La1?xSrxFeO3 ceramics under different relative humidities. Sens. Actuators A: Phys. 1991, 29, 43–47.
[30]  Cavalieri, A.; Caronna, T.; Natali Sora, I.; Tulliani, J.M. Electrical characterization of room temperature humidity sensors in La0.8Sr0.2Fe1-xCuxO3 (x = 0, 0.05, 0.10). Ceram. Int. 2012, 38, 2865–2872.
[31]  Esteban-Cubillo, A.; Tulliani, J.M.; Pecharromán, C.; Moya, J.S. Iron-oxide nanoparticles supported on sepiolite as a novel humidity sensor. J. Eur. Ceram. Soc. 2007, 27, 1983–1989.
[32]  Tulliani, J.M.; Naglieri, V.; Baroni, C. Humidity Sensors Based on Nanocrystalline Iron Oxides. In Special Topics on Materials Science and Technology - An Italian Panorama; Acierno, D., D'Amore, A., Caputo, D., Cioffi, R., Eds.; Brill: Leiden, The Netherlands, 2009; pp. 387–395.
[33]  Ito, S.; Washio, M.; Makino, I.; Koura, N.; Akashi, K. Role of potassium ions in humidity sensitivity of K+-β-ferrite. Solid State Ion. 1996, 86–88, 1005–1011.
[34]  Arshaka, K.; Twomey, K.; Egan, D. A ceramic thick film humidity sensor based on mnzn ferrite. Sensors 2002, 2, 50–61.
[35]  Pelino, M.; Cantalini, C.; Sun, H.T.; Faccio, M. Silica effect on α-Fe2O3 humidity sensor. Sens. Actuators B: Chem. 1998, 3, 186–193.
[36]  Nenov, T.G.; Yordanov, S.P. Ceramic Sensor: Technology and Applications, 1st ed. ed.; Technomic Publishing Company, Inc.: Lancaster, PA, USA, 1996.
[37]  Delta Ohm srl. Available online: http://www.deltaohm.com/ver2012/download/Humiset_M_uk.pdf (accessed on 21 July 2013).
[38]  SDEC France. Available online: http://www.sdec-france.com (accessed on 21 July 2013).
[39]  United States Department of Agriculture - Natural Resources Conservation Service. Available online: http://soils.usda.gov/education/resources/lessons/texture/textural_tri_hi.jpg (accessed on 16 August 2013).
[40]  McCofferty, E.; Zettlemoyer, A.C. Adsorption of water vapour on α-Fe2O3. Discuss. Faraday Soc. 1971, 52, 239–254.
[41]  Henrich, V.E. Electron Spectroscopic Determination of the Electronic Geometric and Chemisorption Properties of Oxide Surfaces. In Surfaces and Interfaces of Ceramic Materials; Dufour, L.C., Monty, C., Petot-Ervas, G., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1989; pp. 1–28.
[42]  Yamazoe, N.; Shimizu, Y. Humidity sensors: Principles and applications. Sens. Actuator 1986, 10, 379–398.
[43]  Chou, K.S.; Lee, T.K.; Liu, F.J. Sensing mechanism of a porous ceramic as humidity sensors. Sens. Actuators B: Chem. 1999, 56, 106–111.
[44]  Banerjee, G.; Sengupta, K. Pore size optimization of humidity sensor - a probabilistic approach. Sens. Actuators B: Chem. 2002, 36, 34–41.
[45]  Wang, Y.Y.; Hu, C.S.; Ming, H.; Zhang, Y.M.; Li, X.X.; Dong, W.X.; Oenema, O. Concentration profiles of CH4, CO2 and N2O in soils of a wheat–maize rotation ecosystem in North China Plain, measured weekly over a whole year. Agric. Ecosyst. Environ. 2013, 164, 260–272.
[46]  Ishizuka, M.; Mikami, M.; Zeng, F.; Gao, W.; Yamada, Y. Measurements of soil water content using Time Domain Reflectometry sensor and water vapor in surface soil at the Gobi site in Taklimakan desert. J. Meteorol. Soc. Jpn. 2005, 83. 6, 987–999.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133