The Rational Function Model (RFM) has been widely used as an alternative to rigorous sensor models of high-resolution optical imagery in photogrammetry and remote sensing geometric processing. However, not much work has been done to evaluate the applicability of the RF model for Synthetic Aperture Radar (SAR) image processing. This paper investigates how to generate a Rational Polynomial Coefficient (RPC) for high-resolution TerraSAR-X imagery using an independent approach. The experimental results demonstrate that the RFM obtained using the independent approach fits the Range-Doppler physical sensor model with an accuracy of greater than 10 ?3 pixel. Because independent RPCs indicate absolute errors in geolocation, two methods can be used to improve the geometric accuracy of the RFM. In the first method, Ground Control Points (GCPs) are used to update SAR sensor orientation parameters, and the RPCs are calculated using the updated parameters. Our experiment demonstrates that by using three control points in the corners of the image, an accuracy of 0.69 pixels in range and 0.88 pixels in the azimuth direction is achieved. For the second method, we tested the use of an affine model for refining RPCs. In this case, by applying four GCPs in the corners of the image, the accuracy reached 0.75 pixels in range and 0.82 pixels in the azimuth direction.
References
[1]
Curlander, J.C. Location of spaceborne SAR imagery. IEEE Trans. Geosci. Remote Sens. 1982, GE-20, 359–364.
[2]
Tao, C.V.; Hu, Y. A Comprehensive study of the rational function model for photogrammetric processing. Photogramm. Eng. Remote Sensing 2001, 67, 1347–1357.
[3]
Toutin, T. Review article: Geometric processing of remote sensing images: Models, algorithms and methods. Int. J. Remote Sens. 2004, 25, 1893–1924.
[4]
Reed, C.N. The open geospatial consortium and web services standards. In Geospatial Web Services: Advances in Information Interoperability; Information Science Reference: Hershey, PA, USA, 2011; pp. 1–16.
[5]
Habib, A.; Kim, K.; Shin, S.; Kim, C.; Bang, K.; Kim, E.; Lee, D. Comprehensive analysis of sensor modeling alternatives for high-resolution imaging satellites. Photogramm. Eng. Remote Sens. 2007, 73, 1241–1251.
[6]
Raggam, H.; Gutjahr, K.; Perko, R.; Schardt, M. Assessment of the stereo-radargrammetric mapping potential of TerraSAR-X multibeam spotlight data. IEEE Trans. Geosci. Remote Sens. 2010, 48, 971–977.
[7]
Zhang, G.; Li, Z.; Pan, H.; Qiang, Q.; Zhai, L. Orientation of spaceborne SAR stereo pairs employing the RPC adjustment model. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2782–2792.
[8]
Zhang, L.; Balz, T.; Liao, M. Satellite SAR geocoding with refined RPC model. ISPRS J. Photogramm. Remote Sens. 2012, 69, 37–49.
[9]
Fraser, C.S.; Hanley, H.B. Bias compensation in rational functions for IKONOS satellite imagery. Photogramm. Eng. Remote Sens. 2003, 69, 53–58.
[10]
Zhang, G.; Fei, W.B.; Li, Z.; Zhu, X.; Li, D.-R. Evaluation of the RPC model for spaceborne SAR imagery. Photogramm. Eng. Remote Sens. 2010, 76, 727–733.
[11]
Zhang, L.; He, X.; Balz, T.; Wei, X.; Liao, M. Rational function modeling for spaceborne SAR datasets. ISPRS J. Photogramm. Remote Sens. 2011, 66, 133–145.
[12]
Zhang, G.; Qiang, Q.; Luo, Y.; Zhu, Y.; Gu, H.; Zhu, X. Application of RPC model in orthorectification of spaceborne SAR imagery. Photogramm. Record 2012, 27, 94–110.
[13]
Méric, S.; Fayard, F.; Pottier, E. Radargrammetric SAR Image Processing. In Geoscience and Remote Sensing; Ho, P.-G.P., Ed.; InTech: Rijeka, Croatia, 2009. Chapter 20; pp. 421–454.
[14]
Tong, X.; Liu, S.; Weng, Q. Bias-corrected rational polynomial coefficients for high accuracy geo-positioning of QuickBird stereo imagery. ISPRS J. Photogramm. Remote Sens. 2010, 65, 218–226.