全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Through-the-Wall Localization of a Moving Target by Two Independent Ultra Wideband (UWB) Radar Systems

DOI: 10.3390/s130911969

Keywords: collaborative localization, direct calculation method, ellipse intersections, radar signal processing, target localization, Taylor series method, UWB radar

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the case of through-the-wall localization of moving targets by ultra wideband (UWB) radars, there are applications in which handheld sensors equipped only with one transmitting and two receiving antennas are applied. Sometimes, the radar using such a small antenna array is not able to localize the target with the required accuracy. With a view to improve through-the-wall target localization, cooperative positioning based on a fusion of data retrieved from two independent radar systems can be used. In this paper, the novel method of the cooperative localization referred to as joining intersections of the ellipses is introduced. This method is based on a geometrical interpretation of target localization where the target position is estimated using a properly created cluster of the ellipse intersections representing potential positions of the target. The performance of the proposed method is compared with the direct calculation method and two alternative methods of cooperative localization using data obtained by measurements with the M-sequence UWB radars. The direct calculation method is applied for the target localization by particular radar systems. As alternative methods of cooperative localization, the arithmetic average of the target coordinates estimated by two single independent UWB radars and the Taylor series method is considered.

References

[1]  Withington, P.; Fluhler, H.; Nag, S. Enhancing homeland security with advanced UWB sensors. IEEE Microw. Mag. 2003, 4, 51–58.
[2]  Amin, M.; Sarabandi, K. Special issue on remote sensing of building interior. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1267–1268.
[3]  Fishler, E.; Haimovich, A.; Blum, R.; Cimini, L.; Chizhik, D.; Valenzuela, R. Spatial diversity in radars-models and detection performance. IEEE Trans. Signal Process. 2006, 54, 823–838.
[4]  Sachs, J.; Aftanas, M.; Crabbe, S.; Drutarovsky, M.; Klukas, R.; Kocur, D.; Nguyen, T.; Peyerl, P.; Rovňáková, J.; Zaikov, E. Detection and Tracking of Moving or Trapped People Hidden by Obstacles Using Ultra-Wideband Pseudo-Noise Radar. Proceedings of the 5th European Radar Conference, Amsterdam, The Netherlands, 30–31 October 2008; pp. 408–411.
[5]  Daniels, D. M-Sequence Radar. In Ground Penetrating Radar; The Institution of Electrical Engineers: London, UK, 2004.
[6]  Rovňaková, J. Complete Signal Processing for Through Wall Tracking of Moving Targets; LAP LAMBERT Academic Publishing: Saarbrucken, Germany, 2010.
[7]  Kocur, D.; Rovňáková, J.; ?vecová, M. Through Wall Tracking of Moving Targets by M-Sequence UWB Radar. In Towards Intelligent Engineering and Information Technology; Rudas, I.J., Fodor, J., Kacprzyk, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 349–363.
[8]  Rovňáková, J.; ?vecová, M.; Kocur, D.; Nguyen, T.T.; Sachs, J. Signal Processing for Through Wall Moving Target Tracking by M-Sequence UWB Radar. Proceedings of the 18th International Conference Radioelektronika, Prague, Czech Republic, 24–25 April 2008; pp. 65–68.
[9]  ?vecová, M.; Kocur, D.; Zetik, R. Object Localization Using Round Trip Propagation Time Measurements. Proceedings of the 18th International Conference Radioelektronika, Prague, Czech Republic, 24–25 April 2008; pp. 41–44.
[10]  ?vecová, M. Node Localization Methods in UWB Wireless Sensor Networks: A Review. Proceedings of the 8th Scientific Conference of Young Researchers FEI TU of Ko?ice, SCYR 2008, Ko?ice, Slovakia, 28 May 2008.
[11]  Chong, E.K.P.; ?ak, S.H. An Introduction to Optimization; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008.
[12]  Yu, K.; Saarnisaari, H.; Montillet, J.-P.; Rabbachin, A.; Oppermann, I.; de Abreu, G.T.F. Ultra-Wideband Wireless Communications and Networks; John Wiley: Chichester, UK, 2006.
[13]  Sayed, A.H.; Tarighat, A.; Khajehnouri, N. Network-based wireless location: Challenges faced in developing techniques for accurate wireless location information. IEEE Signal Process. Mag. 2005, 22, 24–40.
[14]  Cheung, K.; So, H.; Ma, W.K.; Chan, Y.T. Least squares algorithms for time-of-arrival-based mobile location. IEEE Trans. Signal Process. 2004, 52, 1121–1130.
[15]  Huang, Y.; Benesty, J.; Elko, G.W.; Mersereati, R.M. Real-time passive source localization: A practical linear-correction least-squares approach. IEEE Trans. Speech Audio Process. 2001, 9, 943–956.
[16]  Smith, J.O.; Abel, J.S. The spherical interpolation method of source localization. IEEE J. Ocean. Eng. 1987, OE-12, 246–252.
[17]  Smith, J.O.; Abel, J.S. Closed-form least-squares source location estimation from range-difference measurements. IEEE Trans. Acoust. Speech Signal Process. 1987, ASSP-35, 1661–1669.
[18]  Foy, W.H. Position-location solutions by Taylor-series estimation. IEEE Trans. Aerosp. Electron. Syst. 1976, AES-12, 187–194.
[19]  Oppermann, I.; Hamalainen, M.; Iinatti, J. UWB Theory and Applications; John Wiley & Sons: England, UK, 2004.
[20]  Bartoletti, S.; Giorgetti, A.; Conti, A. UWB Sensor Radar Networks for Indoor Passive Navigation. Proceedings of the Tyrrhenian Workshop on Advances in Radar and Remote Sensing, Naples, Italy, 12–14 September 2012; pp. 140–145.
[21]  Chiani, M.; Giorgetti, A.; Mazzotti, M.; Minutolo, R.; Paolini, E. Target Detection Metrics and Tracking for UWB Radar Sensor Networks. Proceedings of the IEEE International Conference on Ultra-Wideband (ICUWB), Vancouver, BC, Canada, 9–11 September 2009; pp. 469–474.
[22]  Shen, J.; Molisch, A.F.; Salmi, J. Accurate passive location estimation using toa measurements. IEEE Trans. Wirel. Commun. 2012, 11, 2182–2192.
[23]  Giorgetti, A. Time-of-arrival estimation based on information theoretic criteria. IEEE Trans. Signal Process. 2013, 61, 1869–1879.
[24]  ?vecová, M. Target Localization by UWB Radar System. Ph.D. Thesis, Technical University of Ko?ice, Ko?ice, Slovakia, 2009.
[25]  ?vecová, M.; Kocur, D. Target Localization by the Method of Joining Intersections of the Ellipses. Proceedings of the 11th International Radar Symposium IRS-2010, Vilnius, Lithuania, 16–18 June 2010; pp. 1–4.
[26]  Rovňáková, J. Complete Signal Processing for Through Wall Target Tracking by M-Sequence UWB Radar System. Ph.D. Thesis, Technical University of Ko?ice, Ko?ice, Slovakia, 2009.
[27]  Kocur, D.; Rovňáková, J. Short-Range Tracking of Moving Targets by Handheld UWB Radar System. In Microwave and Milimeter Wave Circuits and Systems—Emerging Design, Technologies and Applications; Geogiadis, A., Rogier, H., Roselli, L., Arcioni, P., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2012.
[28]  Piccardi, M. Background Subtraction Techniques: A Review. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Hague, The Netherlands, 10–13 October 2004; Volume 4, pp. 3099–3104.
[29]  Zetik, R.; Crabbe, S.; Krajnak, J.; Peyerl, P.; Sachs, J.; Thoma, R. Detection and Localization of Persons Behind Obstacles Using M-Sequence Through-The-Wall Radar. Proceedings of the SPIE- Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense, Orlando (Kissimmee), FL, USA, 17 April 2006; Volume 6210.
[30]  Wren, C.; Azarbayejani, A.; Darrell, T.; Pentland, A. Pfinder: Real-time tracking of the human body. IEEE Trans. Pattern Anal. Mach. Intell. 1997, 19, 780–785.
[31]  Stauffer, C.; Grimson, W. Learning patterns of activity using real-time tracking. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 747–757.
[32]  Nag, S.; Barnes, M. A Moving Target Detection Filter for an Ultra-Wideband Radar. Proceedings of the IEEE Radar Conference, Huntsville, AL, USA, 5–8 May 2003; pp. 147–153.
[33]  Nag, S.; Fluhler, H.; Barnes, M. Preliminary Interferometric Images of Moving Targets Obtained Using a Time-Modulated Ultra-Wide Band Through-Wall Penetration Radar. Proceedings of the IEEE Radar Conference, Atlanta, GA, USA, 1–3 May 2001; pp. 64–69.
[34]  Toyama, K.; Krumm, J.; Brumitt, B.; Meyers, B. Wallflower: Principles and Practice of Background Maintenance. Proceedings of the 7th IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999; Volume 1, pp. 255–261.
[35]  Tipping, M.E.; Bishop, C.M. Mixtures of probabilistic principal component analysers. Neural Comput. 1999, 11, 443–482.
[36]  Poor, H. An Introduction to Signal Detection and Estimation; Springer: New York, NY, USA, 1994.
[37]  Taylor, J.D. Ultra-Wideband Radar Technology; CRC Press: Boca Raton, FL, USA, 2001.
[38]  Immoreev, I.; Fedotov, D. Detection of UWB Signals Reflected from Complex Targets. Proceedings of the IEEE Conference on Ultra Wideband Systems and Technologies, Baltimore, MD, USA, 21–23 May 2002.
[39]  Minkler, G.; Minkler, J. CFAR: The Principles of Automatic Radar Detection in Clutter; Magellan Book Company: Baltimove, MD, USA, 1990.
[40]  Rohling, H. Radar CFAR thresholding in clutter and multiple target situations. IEEE Trans. Aerosp. Electron. Syst. 1983, AES-19, 608–621.
[41]  Dutta, P.; Arora, A.; Bibyk, S. Towards Radar-Enabled Sensor Networks. Proceedings of the 5th International Conference on Information Processing in Sensor Networks, Nashville, TN, USA, 19–21 April 2006; pp. 467–474.
[42]  Rovňaková, J.; Kocur, D. TOA estimation and data association for through wall tracking of moving targets. EURASIP J. Wirel. Commun. Netw. 2010, doi:10.1155/2010/420767.
[43]  Shen, G.; Zetik, R.; Yan, H.; Hirsch, O.; Thoma, R.S. Time of Arrival Estimation for Range-Based Localization in UWB Sensor Networks. Proceedings of the 2010 IEEE International Conference on Ultra-Wideband, Nanjing, China, 20–23 September 2010; pp. 1–4.
[44]  Rovňaková, J.; Kocur, D. Compensation of wall effect for through wall tracking of moving targets. Radioeng. J. 2009, 18, 189–195.
[45]  Aftanas, M.; Rovňaková, J.; Drutarovsky, M.; Kocur, D. Efficient Method of TOA Estimation for Through Wall Imaging by UWB Radar. Proceedings of the 2008 IEEE International Conference on Ultra-Wideband (ICUWB), Hannover, Germany, 10–12 September 2008; pp. 101–104.
[46]  Rovňaková, J.; Kocur, D.; Ka?imír, P. Investigation of localization accuracy for UWB radar operating in complex environment. Acta Polytech. Hung. 2013. in press.
[47]  Brookner, E. Tracking and Kalman Filtering Made Easy; Wiley-Interscience: Sudbury, MA, USA, 1998.
[48]  Brown, R.G. Introduction to Random Signal Analysis and Kalman Filtering; John Wiley & Sons, Inc.: Chichester, NY, USA, 1983.
[49]  Grewal, M.S.; Andrews, A.P. Kalman Filtering: Theory and Practice; Prentice Hall: Englewood Cliffs, NJ, USA, 2003.
[50]  Arulampalam, M.S.; Maskell, S.; Gordon, N.; Clapp, T. A tutorial on particle filters for online nonlinear/non-gaussian gayesian tracking. IEEE Trans. Signal Process. 2002, 50, 174–188.
[51]  Nordlund, P.-J.; Gunnarsson, F.; Gustafsson, F. Particle Filters for Positioning in Wireless Networks. Proceedings of the European Signal Processing Conference, (EUSIPCO), Toulouse, France, 3–6 Sepember 2002.
[52]  Kolawole, M. Radar Systems, Peak Detection and Tracking; Newnes: Burlington, MA, USA, 2003.
[53]  Blackman, S.S.; Popoli, R. Design and Analysis of Modern Tracking Systems; Artech House Publishers: Boston, MA, USA, London, UK, 1993.
[54]  Chang, S.; Sharan, R.; Wolf, M.; Mitsumoto, N.; Burdick, J.W. People tracking with UWB radar using a Multiple-Hypothesis Tracking of Clusters (MHTC) method. Int. J. Soc. Robot. 2010, 2, 3–18.
[55]  Yu, K.; Montilleta, J.; Rabbachin, A.; Cheonga, P.; Oppermann, I. UWB location and tracking for wireless embedded networks. Signal Process. 2006, 86, 2153–2171.
[56]  Paolini, E.; Giorgetti, A.; Chiani, M.; Minutolo, R.; Montanari, M. Localization capability of cooperative anti-intruder radar systems. EURASIP J. Adv. Signal Process. 2008, doi:10.1155/2008/726854.
[57]  Eberly, D. Intersection of Ellipses. Geometric Tools, LLC 1998–2008, Available online: http://www.geometrictools.com/ (accessed on 5 September 2008).
[58]  Zetik, R. Synchronization and Interference of M-sequence UWB Radar Systems. In Personal Communication; Ilmenau University of Technology: Ilmenau, Germany, 2011.
[59]  Aftanas, M.; Rovňáková, J.; Ri?ková, M.; Kocur, D.; Drutarovsky, M. An Analysis of 2D Target Positioning Accuracy for M-Sequence UWB Radar System under Ideal Conditions. Proceedings of 17th International Conference Radioelektronika, Brno, Czech Republic, 24–25 April 2007; pp. 189–194.
[60]  Yarovoy, A.; Matuzas, J.; Levitas, B.; Ligthart, L. UWB radar for human being detection. IEEE Aerosp. Electron. Syst. Mag. 2006, 21, 10–14.
[61]  Nezirovi?, A.; Yarovoy, A.G.; Ligthart, L.P. Signal processing for improved detection of trapped victims using UWB radar. IEEE Trans. Geosc. Remote Sens. 2010, 48, 2005–2014.
[62]  Lv, H.; Lu, G.H.; Jing, X.J.; Wang, J.Q. A new ultra-wideband radar for detecting survivors buried under earthquake rubbles. Microw. Opt. Technol. Lett. 2010, 52, 2621–2624.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133