全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

PTR-MS in Italy: A Multipurpose Sensor with Applications in Environmental, Agri-Food and Health Science

DOI: 10.3390/s130911923

Keywords: PTR-MS, Proton Transfer Reaction-Mass Spectrometry, PTR-ToF-MS, time of flight, Italy

Full-Text   Cite this paper   Add to My Lib

Abstract:

Proton Transfer Reaction Mass Spectrometry (PTR-MS) has evolved in the last decade as a fast and high sensitivity sensor for the real-time monitoring of volatile compounds. Its applications range from environmental sciences to medical sciences, from food technology to bioprocess monitoring. Italian scientists and institutions participated from the very beginning in fundamental and applied research aiming at exploiting the potentialities of this technique and providing relevant methodological advances and new fundamental indications. In this review we describe this activity on the basis of the available literature. The Italian scientific community has been active mostly in food science and technology, plant physiology and environmental studies and also pioneered the applications of the recently released PTR-ToF-MS (Proton Transfer Reaction-Time of Flight-Mass Spectrometry) in food science and in plant physiology. In the very last years new results related to bioprocess monitoring and health science have been published as well. PTR-MS data analysis, particularly in the case of the ToF based version, and the application of advanced chemometrics and data mining are also aspects characterising the activity of the Italian community.

References

[1]  Brunner, C.; Szymczak, W.; H?llriegl, V.; M?rtl, S.; Oelmez, H.; Bergner, A.; Huber, R.M.; Hoeschen, C.; Oeh, U. Discrimination of cancerous and non-cancerous cell lines by headspace-analysis with PTR-MS. Anal. Bioanal. Chem. 2010, 397, 2315–2324.
[2]  Holm-Nielsen, J.B.; Lomborg, C.J.; Oleskowicz-Popiel, P.; Esbensen, K.H. On-line near infrared monitoring of glycerol-boosted anaerobic digestion processes: Evaluation of process analytical technologies. Biotechnol. Bioeng. 2008, 99, 302–313.
[3]  Biasioli, F.; Yeretzian, C.; M?rk, T.D.; Dewulf, J.; van Langenhove, H. Direct-injection mass spectrometry adds the time dimension to (B)VOC analysis. Trends Anal. Chem. 2011, 30, 1003–1017.
[4]  Hansel, A.; Jordan, A.; Holzinger, R.; Prazeller, P.; Vogel, W.; Lindinger, W. Proton transfer reaction mass spectrometry: On-line trace gas analysis at the ppb level. Int. J. Mass Spectrom. Ion Proc. 1995, 149–150, 609–619.
[5]  Lindinger, W.; Hansel, A.; Jordan, A. On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research. Int. J. Mass Spectrom. Ion Proc. 1998, 173, 191–241.
[6]  Munson, M.S.B.; Field, F.H. Chemical ionization mass spectrometry. I. General introduction. J. Am. Chem. Soc. 1966, 88, 2621–2630.
[7]  Fehsenfeld, F.C.; Schmeltekopf, A.L.; Ferguson, E.E. Thermal energy ion—Neutral reaction rates. IV. Nitrogen ion charge-transfer reactions with CO and CO2. J. Chem. Phys. 1966, 44, 4537–4538.
[8]  Ferguson, E.E.; Fehsenfeld, F.C.; Schmeltekopf, A.L. Flowing Afterglow Measurements of Ion-Neutral Reactions. In Advances in Atomic and Molecular Physics; Bates, D.R., Estermann, I., Eds.; Academic Press: Salt Lake City, UT, USA, 1969; Volume 5, pp. 1–56.
[9]  Jordan, A.; Haidacher, S.; Hanel, G.; Hartungen, E.; Herbig, J.; M?rk, L.; Schottkowsky, R.; Seehauser, H.; Sulzer, P.; et al. An online ultra-high sensitivity Proton-transfer-reaction mass-spectrometer combined with switchable reagent ion capability (PTR+SRI?MS). Int. J. Mass Spectrom. 2009, 286, 32–38.
[10]  De Gouw, J.; Warneke, C. Measurements of volatile organic compounds in the earths atmosphere using proton-transfer-reaction mass spectrometry. Mass Spectrom. Rev. 2007, 26, 223–257.
[11]  Blake, R.; Monks, P.; Ellis, A. Proton-transfer reaction mass spectrometry. Chem. Rev. 2009, 109, 861–896.
[12]  Prazeller, P.; Palmer, P.T.; Boscaini, E.; Jobson, T.; Alexander, M. Proton transfer reaction ion trap mass spectrometer. Rapid Commun. Mass Spectrom. 2003, 17, 1593–1599.
[13]  Mielke, L.H.; Erickson, D.E.; McLuckey, S.A.; M?ller, M.; Wisthaler, A.; Hansel, A.; Shepson, P.B. Development of a proton-transfer reaction-linear ion trap mass spectrometer for quantitative determination of volatile organic compounds. Anal. Chem. 2008, 80, 8171–8177.
[14]  Graus, M.; Müller, M.; Hansel, A. High resolution PTR-TOF: Quantification and formula confirmation of VOC in real time. J. Am. Soc. Mass Spectrom. 2010, 21, 1037–1044.
[15]  Sulzer, P.; Edtbauer, A.; Hartungen, E.; Jürschik, S.; Jordan, A.; Hanel, G.; Feil, S.; Jaksch, S.; M?rk, L.; M?rk, T.D. From conventional proton-transfer-reaction mass spectrometry (PTR-MS) to universal trace gas analysis. Int. J. Mass Spectrom. 2012, 321–322, 66–70.
[16]  Karl, T.; Hansel, A.; Cappellin, L.; Kaser, L.; Herdlinger-Blatt, I.; Jud, W. Selective measurements of isoprene and 2-methyl-3-buten-2-ol based on NO+ ionization mass spectrometry. Atmos. Chem. Phys. 2012, 12, 11877–11884.
[17]  Liu, Y.J.; Herdlinger-Blatt, I.; McKinney, K.A.; Martin, S.T. Production of methyl vinyl ketone and methacrolein via the hydroperoxyl pathway of isoprene oxidation. Atmosph. Chem. Phys. Discuss 2012, 12, 33323–33358.
[18]  Boschetti, A.; Biasioli, F.; van Opbergen, M.; Warneke, C.; Jordan, A.; Holzinger, R.; Prazeller, P.; Karl, T.; Hansel, A.; et al. PTR-MS real time monitoring of the emission of volatile organic compounds during postharvest aging of berryfruit. Postharvest Biol. Technol. 1999, 17, 143–151.
[19]  Wisthaler, A.; Jensen, N.R.; Winterhalter, R.; Lindinger, W.; Hjorth, J. Measurements of acetone and other gas phase product yields from the OH-initiated oxidation of terpenes by proton-transfer-reaction mass spectrometry (PTR-MS). Atmosph. Environ. 2001, 35, 6181–6191.
[20]  Aprea, E.; Morisco, F.; Biasioli, F.; Vitaglione, P.; Cappellin, L.; Soukoulis, C.; Lembo, V.; Gasperi, F.; D'Argenio, G.; Fogliano, V.; et al. Analysis of breath by proton transfer reaction time of flight mass spectrometry in rats with steatohepatitis induced by high-fat diet. J. Mass Spectrom. 2012, 47, 1098–1103.
[21]  Morisco, F.; Aprea, E.; Lembo, V.; Fogliano, V.; Vitaglione, P.; Mazzone, G.; Cappellin, L.; Gasperi, F.; Masone, S.; De Palma, G.D.; et al. Rapid “breath-print” of liver cirrhosis by proton transfer reaction time-of-flight mass spectrometry. A pilot study. PLoS One 2013, 8, e59658.
[22]  Cappellin, L.; Probst, M.; Limtrakul, J.; Biasioli, F.; Schuhfried, E.; Soukoulis, C.; M?rk, T.D.; Gasperi, F. Proton transfer reaction rate coefficients between H3O+ and some sulphur compounds. Int. J. Mass Spectrom. 2010, 295, 43–48.
[23]  Cappellin, L.; Karl, T.; Probst, M.; Ismailova, O.; Winkler, P.M.; Soukoulis, C.; Aprea, E.; M?rk, T.D.; Gasperi, F.; Biasioli, F. On quantitative determination of volatile organic compound concentrations using proton transfer reaction time-of-flight mass spectrometry. Environ. Sci. Technol. 2012, 46, 2283–2290.
[24]  Cappellin, L.; Biasioli, F.; Fabris, A.; Schuhfried, E.; Soukoulis, C.; Mark, T.; Gasperi, F. Improved mass accuracy in PTR-TOF-MS: Another step towards better compound identification in PTR-MS. Int. J. Mass Spectrom. 2010, 290, 60–63.
[25]  Cappellin, L.; Aprea, E.; Granitto, P.; Wehrens, R.; Soukoulis, C.; Viola, R.; M?rk, T.D.; Gasperi, F.; Biasioli, F. Linking GC-MS and PTR-TOF-MS fingerprints of food samples. Chemom. Intell. Lab. Syst. 2012, 118, 301–307.
[26]  Schuhfried, E.; Biasioli, F.; Aprea, E.; Cappellin, L.; Soukoulis, C.; Ferrigno, A.; M?rk, T.D.; Gasperi, F. PTR-MS measurements and analysis of models for the calculation of Henry's law constants of monosulfides and disulfides. Chemosphere 2011, 83, 311–317.
[27]  Cappellin, L.; Biasioli, F.; Schuhfried, E.; Soukoulis, C.; M?rk, T.D.; Gasperi, F. Extending the dynamic range of proton transfer reaction time-of-flight mass spectrometers by a novel dead time correction. Rapid Commun. Mass Spectrom. 2011, 25, 179–183.
[28]  Cappellin, L.; Biasioli, F.; Granitto, P.; Schuhfried, E.; Soukoulis, C.; M?rk, T.D.; Gasperi, F. On data analysis in PTR-TOF-MS: From raw spectra to data mining. Sens. Actuators B 2011, 155, 183–190.
[29]  De Gouw, J.; Warneke, C.; Karl, T.; Eerdekens, G.; van der Veen, C.; Fall, R. Sensitivity and specificity of atmospheric trace gas detection by proton-transfer-reaction mass spectrometry. Int. J. Mass Spectrom. 2003, 223, 365–382.
[30]  Warneke, C.; van der Veen, C.; Luxembourg, S.; de Gouw, J.A.; Kok, A. Measurements of benzene and toluene in ambient air using proton-transfer-reaction mass spectrometry: Calibration, humidity dependence, and field intercomparison. Int. J. Mass Spectrom. 2001, 207, 167–182.
[31]  ?paněl, P.; Smith, D. Reactions of hydrated hydronium ions and hydrated hydroxide ions with some hydrocarbons and oxygen-bearing organic molecules. J. Phys. Chem. 1995, 99, 15551–15556.
[32]  Tani, A.; Hayward, S.; Hewitt, C.N. Measurement of monoterpenes and related compounds by proton transfer reaction-mass spectrometry (PTR-MS). Int. J. Mass Spectrom. 2003, 223–224, 561–578.
[33]  Smith, D.; ?paněl, P. Direct, rapid quantitative analyses of BVOCs using SIFT-MS and PTR-MS obviating sample collection. Trends Anal. Chem. 2011, 30, 945–959.
[34]  Von Hartungen, E.; Wisthaler, A.; Mikoviny, T.; Jaksch, D.; Boscaini, E.; Dunphy, P.; Mark, T. Proton-transfer-reaction mass spectrometry (PTR-MS) of carboxylic acids—Determination of Henry's law constants and axillary odour investigations. Int. J. Mass Spectrom. 2004, 239, 243–248.
[35]  Schuhfried, E.; Aprea, E.; Cappellin, L.; Soukoulis, C.; Viola, R.; M?rk, T.D.; Gasperi, F.; Biasioli, F. Desorption kinetics with PTR-MS: Isothermal differential desorption kinetics from a heterogeneous inlet surface at ambient pressure and a new concept for compound identification. Int. J. Mass Spectrom. 2012, 314, 33–41.
[36]  Titzmann, T.; Graus, M.; Müller, M.; Hansel, A.; Ostermann, A. Improved peak analysis of signals based on counting systems: Illustrated for proton-transfer-reaction time-of-flight mass spectrometry. Int. J. Mass Spectrom. 2010, 295, 72–77.
[37]  Chernushevich, I.V.; Loboda, A.V.; Thomson, B.A. An introduction to quadrupole-time-of-flight mass spectrometry. J. Mass Spectrom. 2001, 36, 849–865.
[38]  Stephan, T.; Zehnpfenning, J.; Benninghoven, A. Correction of dead-time effects in time-of-flight mass-spectrometry. J. Vac. Sci. Technol. A-Vac. Surf. Films 1994, 12, 405–410.
[39]  Coates, P.B. Analytical corrections for dead time effects in the measurement of time-interval distributions. Rev. Sci. Instrum. 1992, 63, 2084.
[40]  Biasioli, F.; Gasperi, F.; Aprea, E.; Mott, D.; Boscaini, E.; Mayr, D.; Mark, T. Coupling proton transfer reaction-mass spectrometry with linear discriminant analysis: A case study. J. Agric. Food Chem. 2003, 51, 7227–7233.
[41]  Gasperi, F.; Gallerani, G.; Boschetti, A.; Biasioli, F.; Monetti, A.; Boscaini, E.; Jordan, A.; Lindinger, W.; Iannotta, S. The mozzarella cheese flavour profile: A comparison between judge panel analysis and proton transfer reaction mass spectrometry. J. Sci. Food Agric. 2001, 81, 357–363.
[42]  Granitto, P.; Biasioli, F.; Aprea, E.; Mott, D.; Furlanello, C.; Mark, T.; Gasperi, F. Rapid and non-destructive identification of strawberry cultivars by direct PTR-MS headspace analysis and data mining techniques. Sens. Actuators B-Chem. 2007, 121, 379–385.
[43]  Aprea, E.; Biasioli, F.; Gasperi, F.; Mott, D.; Marini, F.; Maerk, T.D. Assessment of Trentingrana cheese ageing by proton transfer reaction-mass spectrometry and chemometrics. Int. Dairy J. 2007, 17, 226–234.
[44]  Granitto, P.; Furlanello, C.; Biasioli, F.; Gasperi, F. Recursive feature elimination with random forest for PTR-MS analysis of agroindustrial products. Chemom. Intell. Lab. Syst. 2006, 83, 83–90.
[45]  Lindinger, C.; Labbe, D.; Pollien, P.; Rytz, A.; Juillerat, M.A.; Yeretzian, C.; Blank, I. When machine tastes coffee: Instrumental approach to predict the sensory profile of espresso coffee. Anal. Chem. 2008, 80, 1574–1581.
[46]  Biasioli, F.; Gasperi, F.; Yeretzian, C.; M?rk, T.D. PTR-MS monitoring of VOCs and BVOCs in food science and technology. Trends Anal. Chem. 2011, 30, 968–977.
[47]  Simon, J.E.; Hetzroni, A.; Bordelon, B.; Miles, G.E.; Charles, D.J. Electronic sensing of aromatic volatiles for quality sorting of blueberries. J. Food Sci. 1996, 61, 967–970.
[48]  Aprea, E.; Biasioli, F.; Sani, G.; Cantini, C.; Mark, T.; Gasperi, F. Proton transfer reaction-mass spectrometry (PTR-MS) headspace analysis for rapid detection of oxidative alteration of olive oil. J. Agric. Food Chem. 2006, 54, 7635–7640.
[49]  Aprea, E.; Biasioli, F.; Sani, G.; Cantini, C.; Mark, T.; Gasperi, F. Online monitoring of olive oil headspace by proton transfer reaction-mass spectrometry. Rivista italiana della sostanze grasse 2008, 85, 92–97.
[50]  Biasioli, F.; Gasperi, F.; Aprea, E.; Colato, L.; Boscaini, E.; Mark, T. Fingerprinting mass spectrometry by PTR-MS: Heat treatment vs. pressure treatment of red orange juice—A case study. Int. J. Mass Spectrom. 2003, 223, 343–353.
[51]  Gasperi, F.; Aprea, E.; Biasioli, F.; Carlin, S.; Endrizzi, I.; Pirretti, G.; Spilimbergo, S. Effects of supercritical CO2 and N2O pasteurisation on the quality of fresh apple juice. Food Chem. 2009, 115, 129–136.
[52]  Aprea, E.; Biasioli, F.; Carlin, S.; Endrizzi, I.; Gasperi, F. Investigation of volatile compounds in two raspberry cultivars by two headspace techniques: Solid-phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) and proton-transfer reaction-mass spectrometry (PTR-MS). J. Agric. Food Chem. 2009, 57, 4011–4018.
[53]  Cappellin, L.; Aprea, E.; Granitto, P.; Romano, A.; Gasperi, F.; Biasioli, F. Multiclass methods in the analysis of metabolomic datasets: The example of raspberry cultivar volatile compounds detected by GC-MS and PTR-MS. Food Res. Int. 2013. in press.
[54]  Cappellin, L.; Soukoulis, C.; Aprea, E.; Granitto, P.; Dallabetta, N.; Costa, F.; Viola, R.; M?rk, T.D.; Gasperi, F.; Biasioli, F. PTR-ToF-MS and data mining methods: A new tool for fruit metabolomics. Metabolomics 2012, 8, 761–770.
[55]  Spitaler, R.; Araghipour, N.; Mikoviny, T.; Wisthaler, A.; Via, J.D.; M?rk, T.D. PTR-MS in enology: Advances in analytics and data analysis. Int. J. Mass Spectrom. 2007, 266, 1–7.
[56]  Aprea, E.; Biasioli, F.; Carlin, S.; Versini, G.; M?rk, T.D.; Gasperi, F. Rapid white truffle headspace analysis by proton transfer reaction mass spectrometry and comparison with solid-phase microextraction coupled with gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 2007, 21, 2564–2572.
[57]  Galle, S.A.; Koot, A.; Soukoulis, C.; Cappellin, L.; Biasioli, F.; Alewijn, M.; van Ruth, S.M. Typicality and geographical origin markers of protected origin cheese from the netherlands revealed by PTR-MS. J. Agric. Food Chem. 2011, 59, 2554–2563.
[58]  Boscaini, E.; van Ruth, S.; Biasioli, F.; Gasperi, F.; M?rk, T.D. Gas Chromatography-Olfactometry (GC-O) and proton transfer reaction?mass spectrometry (PTR-MS) analysis of the flavor profile of grana padano, parmigiano reggiano, and grana trentino cheeses. J. Agric. Food Chem. 2003, 51, 1782–1790.
[59]  Biasioli, F.; Gasperi, F.; Aprea, E.; Endrizzi, I.; Framondino, V.; Marini, F.; Mott, D.; Mark, T. Correlation of PTR-MS spectral fingerprints with sensory characterisation of flavour and odour profile of “Trentingrana” cheese. Food Qual. Prefer. 2006, 17, 63–75.
[60]  Fabris, A.; Biasioli, F.; Granitto, P.M.; Aprea, E.; Cappellin, L.; Schuhfried, E.; Soukoulis, C.; M?rk, T.D.; Gasperi, F.; Endrizzi, I. PTR-TOF-MS and data-mining methods for rapid characterisation of agro-industrial samples: Influence of milk storage conditions on the volatile compounds profile of Trentingrana cheese. J. Mass Spectrom. 2010, 45, 1065–1074.
[61]  Soukoulis, C.; Biasioli, F.; Aprea, E.; Schuhfried, E.; Cappellin, L.; M?rk, T.D.; Gasperi, F. PTR-TOF-MS analysis for influence of milk base supplementation on texture and headspace concentration of endogenous volatile compounds in yogurt. Food Bioprocess Technol. 2012, 5, 2085–2097.
[62]  Sanchez del Pulgar, J.; Soukoulis, C.; Biasioli, F.; Cappellin, L.; Garcia, C.; Gasperi, F.; Granitto, P.; Maerk, T.D.; Piasentier, E.; Schuhfried, E. Rapid characterization of dry cured ham produced following different PDOs by proton transfer reaction time of flight mass spectrometry (PTR-ToF-MS). Talanta 2011, 85, 386–393.
[63]  Sánchez Del Pulgar, J.; Soukoulis, C.; Carrapiso, A.I.; Cappellin, L.; Granitto, P.; Aprea, E.; Romano, A.; Gasperi, F.; Biasioli, F. Effect of the pig rearing system on the final volatile profile of Iberian dry-cured ham as detected by PTR-ToF-MS. Meat Sci. 2013, 93, 420–428.
[64]  Sánchez del Pulgar, J.; Carrapiso, A.I.; Reina, R.; Biasioli, F.; García, C. Effect of IGF-II genotype and pig rearing system on the final characteristics of dry-cured Iberian hams. Meat Sci. 2013, 95, 586–592.
[65]  Soukoulis, C.; Cappellin, L.; Aprea, E.; Costa, F.; Viola, R.; M?rk, T.D.; Gasperi, F.; Biasioli, F. PTR-ToF-MS, a novel, rapid, high sensitivity and non-invasive tool to monitor volatile compound release during fruit post-harvest storage: The case study of apple ripening. Food Bioprocess Technol. 2012, doi:10.1007/s11947-012-0930-6.
[66]  White, P.J. Recent advances in fruit development and ripening: An overview. J. Exp. Bot. 2002, 53, 1995–2000.
[67]  Defilippi, B.G.; Dandekar, A.M.; Kader, A.A. Relationship of ethylene biosynthesis to volatile production, related enzymes, and precursor availability in apple peel and flesh tissues. J. Agric. Food Chem. 2005, 53, 3133–3141.
[68]  Golding, J.B.; McGlasson, W.B.; Wyllie, S.G. Relationship between production of ethylene and alpha-farnesene in apples, and how it is influenced by the timing of diphenylamine treatment. Postharvest Biol. Technol. 2001, 21, 225–233.
[69]  Bourne, M.C. Food Texture and Viscosity: Concept and Measurement; Academic Press: Geneva, NY, USA, 2002.
[70]  Zini, E.; Biasioli, F.; Gasperi, F.; Mott, D.; Aprea, E.; M?rk, T.D.; Patocchi, A.; Gessler, C.; Komjanc, M. QTL mapping of volatile compounds in ripe apples detected by proton transfer reaction-mass spectrometry. Euphytica 2005, 145, 269–279.
[71]  Costa, F.; Cappellin, L.; Zini, E.; Patocchi, A.; Kellerhals, M.; Komjanc, M.; Gessler, C.; Biasioli, F. QTL validation and stability for Volatile Organic Compounds (VOCs) in apple. Plant Sci. 2013. in press.
[72]  Carbone, F.; Mourgues, F.; Biasioli, F.; Gasperi, F.; Mark, T.; Rosati, C.; Perrotta, G. Development of molecular and biochemical tools to investigate fruit quality traits in strawberry elite genotypes. Mol. Breed. 2006, 18, 127–142.
[73]  Aprea, E.; Biasioli, F.; Carlin, S.; Mark, T.; Gasperi, F. Monitoring benzene formation from benzoate in model systems by proton transfer reaction-mass spectrometry. Int. J. Mass Spectrom. 2008, 275, 117–121.
[74]  Soukoulis, C.; Aprea, E.; Biasioli, F.; Cappellin, L.; Schuhfried, E.; M?rk, T.D.; Gasperi, F. Proton transfer reaction time-of-flight mass spectrometry monitoring of the evolution of volatile compounds during lactic acid fermentation of milk. Rapid Commun. Mass Spectrom. 2010, 24, 2127–2134.
[75]  Tamime, A.Y.; Robinson, R.K. Tamime and Robinson's Yoghurt: Science and Technology; Woodhead Publishing Ltd: Auchincruive Estate, UK, 2007.
[76]  De Brabandere, A.G.; de Baerdemaeker, J.G. Effects of process conditions on the pH development during yogurt fermentation. J. Food Eng. 1999, 41, 221–227.
[77]  Papurello, D.; Soukoulis, C.; Schuhfried, E.; Cappellin, L.; Gasperi, F.; Silvestri, S.; Santarelli, M.; Biasioli, F. Monitoring of volatile compound emissions during dry anaerobic digestion of the organic fraction of municipal solid waste by proton transfer reaction time-of-flight mass spectrometry. Bioresour. Technol. 2012, 126, 254–265.
[78]  Lanzini, A.; Leone, P. Experimental investigation of direct internal reforming of biogas in solid oxide fuel cells. Int. J. Hydrog. Energy 2010, 35, 2463–2476.
[79]  Mata-Alvarez, J.; Macé, S.; Llabrés, P. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour. Technol. 2000, 74, 3–16.
[80]  Hagen, A.; Rasmussen, J.F. B.; Thyden, K. Durability of solid oxide fuel cells using sulfur containing fuels. J. Power Sources 2011, 196, 7271–7276.
[81]  Taylor, A.J.; Linforth, R.S. T. Food Flavour Technology; Wiley-Blackwell: Chichester, UK, 2010.
[82]  Aprea, E.; Biasioli, F.; Gasperi, F.; M?rk, T.D.; van Ruth, S. In vivo monitoring of strawberry flavour release from model custards: Effect of texture and oral processing. Flavour Fragr. J. 2006, 21, 53–58.
[83]  Ting, J.L.V.; Soukoulis, C.; Silcock, P.; Cappellin, L.; Romano, A.; Aprea, E.; Bremer, P.J.; M?rk, T.D.; Gasperi, F.; Biasioli, F. In Vitro and In Vivo flavor release from intact and fresh-cut apple in relation with genetic, textural, and physicochemical parameters. J. Food Sci. 2012, 77, C1226–C1233.
[84]  Heenan, S.; Soukoulis, C.; Silcock, P.; Fabris, A.; Aprea, E.; Cappellin, L.; M?rk, T.D.; Gasperi, F.; Biasioli, F. PTR-TOF-MS monitoring of in vitro and in vivo flavour release in cereal bars with varying sugar composition. Food Chem. 2012, 131, 477–484.
[85]  Karl, T.; Yeretzian, C.; Jordan, A.; Lindinger, W. Dynamic measurements of partition coefficients using proton-transfer-reaction mass spectrometry (PTR–MS). Int. J. Mass Spectrom. 2003, 223–224, 383–395.
[86]  Aprea, E.; Biasioli, F.; Mark, T.; Gasperi, F. PTR-MS study of esters in water and water/ethanol solutions: Fragmentation patterns and partition coefficients. Int. J. Mass Spectrom. 2007, 262, 114–121.
[87]  Burnett, M.G. Determination of partition coefficients at infinite dilution by the gas chromatographic analysis of the vapor above dilute solutions. Anal. Chem. 1963, 35, 1567–1570.
[88]  Pollien, P.; Jordan, A.; Lindinger, W.; Yeretzian, C. Liquid-air partitioning of volatile compounds in coffee: Dynamic measurements using proton-transfer-reaction mass spectrometry. Int. J. Mass Spectrom. 2003, 228, 69–80.
[89]  Tasin, M.; Cappellin, L.; Biasioli, F. Fast direct injection mass-spectrometric characterization of stimuli for insect electrophysiology by proton transfer reaction-time of flight mass-spectrometry (PTR-ToF-MS). Sensors 2012, 12, 4091–4104.
[90]  Atkinson, R. Atmospheric chemistry of VOCs and NOx. Atmosph. Environ. 2000, 34, 2063–2101.
[91]  Kavouras, I.G.; Mihalopoulos, N.; Stephanou, E.G. Formation of atmospheric particles from organic acids produced by forests. Nature 1998, 395, 683–686.
[92]  Carlo, P.D.; Brune, W.H.; Martinez, M.; Harder, H.; Lesher, R.; Ren, X.; Thornberry, T.; Carroll, M.A.; Young, V.; Shepson, P.B.; et al. Missing OH reactivity in a forest: Evidence for unknown reactive biogenic VOCs. Science 2004, 304, 722–725.
[93]  Kiendler-Scharr, A.; Wildt, J.; Maso, M.D.; Hohaus, T.; Kleist, E.; Mentel, T.F.; Tillmann, R.; Uerlings, R.; Schurr, U.; Wahner, A. New particle formation in forests inhibited by isoprene emissions. Nature 2009, 461, 381–384.
[94]  Karl, T.; Harley, P.; Emmons, L.; Thornton, B.; Guenther, A.; Basu, C.; Turnipseed, A.; Jardine, K. Efficient atmospheric cleansing of oxidized organic trace gases by vegetation. Science 2010, 330, 816–819.
[95]  Loreto, F.; Ciccioli, P.; Cecinato, A.; Brancaleoni, E.; Frattoni, M.; Fabozzi, C.; Tricoli, D. Evidence of the photosynthetic origin of monoterpenes emitted by quercus ilex L. Leaves by 13C labeling. Plant Physiol. 1996, 110, 1317–1322.
[96]  Loreto, F.; Bagnoli, F.; Fineschi, S. One species, many terpenes: Matching chemical and biological diversity. Trends Plant Sci. 2009, 14, 416–420.
[97]  Schurgers, G.; Arneth, A.; Holzinger, R.; Goldstein, A.H. Process-based modelling of biogenic monoterpene emissions combining production and release from storage. Atmos. Chem. Phys. 2009, 9, 3409–3423.
[98]  Lichtenthaler, H.K.; Schwender, J.; Disch, A.; Rohmer, M. Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS Lett. 1997, 400, 271–274.
[99]  Rosenstiel, T.N.; Potosnak, M.J.; Griffin, K.L.; Fall, R.; Monson, R.K. Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem. Nature 2003, 421, 256–259.
[100]  Scholefield, P.A.; Doick, K.J.; Herbert, B.M. J.; Hewitt, C.N. S.; Schnitzler, J.-P.; Pinelli, P.; Loreto, F. Impact of rising CO2 on emissions of volatile organic compounds: Isoprene emission from Phragmites australis growing at elevated CO2 in a natural carbon dioxide spring. Plant Cell Environ. 2004, 27, 393–401.
[101]  Arneth, A.; Schurgers, G.; Hickler, T.; Miller, P.A. Effects of species composition, land surface cover, CO2 concentration and climate on isoprene emissions from European forests. Plant Biol. 2008, 10, 150–162.
[102]  Davison, B.; Taipale, R.; Langford, B.; Misztal, P.; Fares, S.; Matteucci, G.; Loreto, F.; Cape, N.; Rinne, J.; Hewitt, C.N. Concentrations and fluxes of biogenic volatile organic compounds above a Mediterranean macchia ecosystem in western Italy. Biogeosciences 2009, 6, 1655–1670.
[103]  Brilli, F.; H?rtnagl, L.; Bamberger, I.; Schnitzhofer, R.; Ruuskanen, T.M.; Hansel, A.; Loreto, F.; Wohlfahrt, G. Qualitative and quantitative characterization of volatile organic compound emissions from cut grass. Environ. Sci. Technol. 2012, 46, 3859–3865.
[104]  Loreto, F.; Barta, C.; Brilli, F.; Nogues, I. On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature. Plant Cell Environ. 2006, 29, 1820–1828.
[105]  Jardine, K.J.; Monson, R.K.; Abrell, L.; Saleska, S.R.; Arneth, A.; Jardine, A.; Ishida, F.Y.; Serrano, A.M. Y.; Artaxo, P.; Karl, T.; et al. Within-plant isoprene oxidation confirmed by direct emissions of oxidation products methyl vinyl ketone and methacrolein. Glob. Change Biol. 2012, 18, 973–984.
[106]  Wohlfahrt, G.; Brilli, F.; H?Rtnagl, L.; Xu, X.; Bingemer, H.; Hansel, A.; Loreto, F. Carbonyl sulfide (COS) as a tracer for canopy photosynthesis, transpiration and stomatal conductance: Potential and limitations. Plant Cell Environ. 2012, 35, 657–667.
[107]  Sharkey, T.D.; Yeh, S. Isoprene emission from plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001, 52, 407–436.
[108]  Bleeker, P.M.; Diergaarde, P.J.; Ament, K.; Guerra, J.; Weidner, M.; Schütz, S.; Both, M.T.J.D.; Haring, M.A.; Schuurink, R.C. The role of specific tomato volatiles in tomato-whitefly interaction. Plant Physiol. 2009, 151, 925–935.
[109]  Pasqua, G.; Monacelli, B.; Manfredini, C.; Loreto, F.; Perez, G. The role of isoprenoid accumulation and oxidation in sealing wounded needles of Mediterranean pines. Plant Sci. 2002, 163, 355–359.
[110]  Heil, M. Indirect defence via tritrophic interactions. New Phytol. 2008, 178, 41–61.
[111]  Fineschi, S.; Loreto, F. Leaf volatile isoprenoids: An important defensive armament in forest tree species. iForest—Biogeosci. For. 2012, 5, 13–17.
[112]  Loivam?ki, M.; Mumm, R.; Dicke, M.; Schnitzler, J.-P. Isoprene interferes with the attraction of bodyguards by herbaceous plants. PNAS 2008, 105, 17430–17435.
[113]  Brilli, F.; Ciccioli, P.; Frattoni, M.; Prestininzi, M.; Spanedda, A.F.; Loreto, F. Constitutive and herbivore-induced monoterpenes emitted by Populus × euroamericana leaves are key volatiles that orient Chrysomela populi beetles. Plant Cell Environ. 2009, 32, 542–552.
[114]  Loreto, F.; Ciccioli, P.; Brancaleoni, E.; Cecinato, A.; Frattoni, M.; Sharkey, T.D. Different sources of reduced carbon contribute to form three classes of terpenoid emitted by Quercus ilex L. leaves. PNAS 1996, 93, 9966–9969.
[115]  Singsaas, E.L.; Lerdau, M.; Winter, K.; Sharkey, T.D. Isoprene increases thermotolerance of isoprene-emitting species. Plant Physiol. 1997, 115, 1413–1420.
[116]  Loreto, F.; Mannozzi, M.; Maris, C.; Nascetti, P.; Ferranti, F.; Pasqualini, S. Ozone quenching properties of isoprene and its antioxidant role in leaves. Plant Physiol. 2001, 126, 993–1000.
[117]  Loreto, F.; Velikova, V. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol. 2001, 127, 1781–1787.
[118]  Velikova, V.; Pinelli, P.; Pasqualini, S.; Reale, L.; Ferranti, F.; Loreto, F. Isoprene decreases the concentration of nitric oxide in leaves exposed to elevated ozone. New Phytol. 2005, 166, 419–426.
[119]  Loreto, F.; Schnitzler, J.-P. Abiotic stresses and induced BVOCs. Trends Plant Sci. 2010, 15, 154–166.
[120]  Velikova, V.; Varkonyi, Z.; Szabo, M.; Maslenkova, L.; Nogues, I.; Kovacs, L.; Peeva, V.; Busheva, M.; Garab, G.; Sharkey, T.D.; et al. Increased thermostability of thylakoid membranes in isoprene-emitting leaves probed with three biophysical techniques. Plant Physiol. 2011, 157, 905–916.
[121]  Velikova, V.; Sharkey, T.D.; Loreto, F. Stabilization of thylakoid membranes in isoprene-emitting plants reduces formation of reactive oxygen species. Plant Signal Behav. 2012, 7, 139–141.
[122]  Brilli, F.; Barta, C.; Fortunati, A.; Lerdau, M.; Loreto, F.; Centritto, M. Response of isoprene emission and carbon metabolism to drought in white poplar (Populus alba) saplings. New Phytol. 2007, 175, 244–254.
[123]  Sharkey, T.D.; Wiberley, A.E.; Donohue, A.R. Isoprene emission from plants: Why and how. Ann. Bot. 2008, 101, 5–18.
[124]  Stoddart, D.M. The Scented Ape: The Biology and Culture of Human Odour; University Press: Cambridge, UK, 1990.
[125]  Defoer, N.; De Bo, I.; van Langenhove, H.; Dewulf, J.; van Elst, T. Gas chromatography–mass spectrometry as a tool for estimating odour concentrations of biofilter effluents at aerobic composting and rendering plants. J. Chromatogr. A 2002, 970, 259–273.
[126]  Nicolas, J.; Romain, A.-C.; Wiertz, V.; Maternova, J.; André, P. Using the classification model of an electronic nose to assign unknown malodours to environmental sources and to monitor them continuously. Sens. Actuators B Chem. 2000, 69, 366–371.
[127]  Stuetz, R.M.; Fenner, R.A.; Engin, G. Assessment of odours from sewage treatment works by an electronic nose, H2S analysis and olfactometry. Water Res. 1999, 33, 453–461.
[128]  Biasioli, F.; Gasperi, F.; Odorizzi, G.; Aprea, E.; Mott, D.; Marini, F.; Autiero, G.; Rotondo, G.; Mark, T. PTR-MS monitoring of odour emissions from composting plants. Int. J. Mass Spectrom. 2004, 239, 103–109.
[129]  Biasioli, F.; Aprea, E.; Gasperi, F.; Mark, T. Measuring odour emission and biofilter efficiency in composting plants by proton transfer reaction-mass spectrometry. Water Sci. Technol. 2009, 59, 1263–1269.
[130]  Pauling, L.; Robinson, A.B.; Teranishi, R.; Cary, P. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proc. Natl. Acad. Sci. USA 1971, 68, 2374–2376.
[131]  Amann, A.; Smith, D. Breath Analysis for Clinical Diagnosis and Therapeutic Monitoring; World Scientific: Singapore, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133