In this paper we present a new method for hand gesture recognition based on an RGB-D sensor. The proposed approach takes advantage of depth information to cope with the most common problems of traditional video-based hand segmentation methods: cluttered backgrounds and occlusions. The algorithm also uses colour and semantic information to accurately identify any number of hands present in the image. Ten different static hand gestures are recognised, including all different combinations of spread fingers. Additionally, movements of an open hand are followed and 6 dynamic gestures are identified. The main advantage of our approach is the freedom of the user’s hands to be at any position of the image without the need of wearing any specific clothing or additional devices. Besides, the whole method can be executed without any initial training or calibration. Experiments carried out with different users and in different environments prove the accuracy and robustness of the method which, additionally, can be run in real-time.
References
[1]
Weissmann, J.; Salomon, R. Gesture recognition for virtual reality applications using data gloves and neural networks. Proceedings of the International Joint Conference on Neural Networks (IJCNN), Washington, DC, USA, 10–16 July 1999; pp. 2043–2046.
[2]
Fahn, C.S.; Sun, H. Development of a fingertip glove equipped with magnetic tracking sensors. Sensors 2010, 10, 1119–1140.
[3]
Schl?mer, T.; Poppinga, B.; Henze, N.; Boll, S. Gesture Recognition with a Wii Controller. Proceedings of the 2nd International Conference on Tangible and Embedded Interaction, Bonn, Germany, 18–20 February 2008; pp. 11–14.
[4]
Jing, L.; Zhou, Y.; Cheng, Z.; Huang, T. Magic ring: A finger-worn device for multiple appliances control using static finger gestures. Sensors 2012, 12, 5775–5790.
[5]
Manresa, C.; Varona, J.; Mas, R.; Perales, F. Hand tracking and gesture recognition for human-computer interaction. Electron. Lett. Comput. Vis. Image Anal. 2005, 5, 96–104.
[6]
Weichert, F.; Bachmann, D.; Rudak, B.; Fisseler, D. Analysis of the accuracy and robustness of the leap motion controller. Sensors 2013, 13, 6380–6393.
[7]
Zhang, S.; He, W.; Yu, Q.; Zheng, X. Low-Cost Interactive Whiteboard Using the Kinect. Proceedings of the International Conference on Image Analysis and Signal Processing (IASP), Huangzhou, China, 9–11 November 2012; pp. 1–5.
[8]
Chang, Y.J.; Chen, S.F.; Huang, J.D. A Kinect-based system for physical rehabilitation: A pilot study for young adults with motor disabilities. Res. Dev. Disabil. 2011, 32, 2566–2570.
[9]
Ramey, A.; Gonzalez-Pacheco, V.; Salichs, M.A. Integration of a Low-Cost rgb-d Sensor in a Social Robot for Gesture Recognition. Proceedings of the 6th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Lausanne, Switzerland, 6–9 March 2011; pp. 229–230.
[10]
Van den Bergh, M.; Carton, D.; De Nijs, R.; Mitsou, N.; Landsiedel, C.; Kuehnlenz, K.; Wollherr, D.; van Gool, L.; Buss, M. Real-time 3D hand gesture interaction with a robot for understanding directions from humans. Proceedings of the IEEE RO-MAN, Atlanta, GA, USA, 31 July–3 August 2011; pp. 357–362.
[11]
Xu, D.; Chen, Y.L.; Lin, C.; Kong, X.; Wu, X. Real-Time Dynamic Gesture Recognition System Based on Depth Perception for Robot Navigation. Proceedings of the IEEE International Conference on Robotics and Biomimetics, Guangzhou, China, 11–14 December 2012; pp. 689–694.
[12]
Zafrulla, Z.; Brashear, H.; Starner, T.; Hamilton, H.; Presti, P. American sign language recognition with the kinect. Proceedings of the 13th International Conference on Multimodal Interfaces, Alicante, Spain, 14–18 November 2011; pp. 279–286.
[13]
Mozos, O.M.; Mizutani, H.; Kurazume, R.; Hasegawa, T. Categorization of indoor places using the Kinect sensor. Sensors 2012, 12, 6695–6711.
[14]
Azzari, G.; Goulden, M.L.; Rusu, R.B. Rapid characterization of vegetation structure with a Microsoft Kinect sensor. Sensors 2013, 13, 2384–2398.
[15]
Suarez, J.; Murphy, R.R. Hand Gesture Recognition with Depth Images: A Review. Proceedings of the IEEE RO-MAN, Paris, France, 9–13 September 2012; pp. 411–417.
[16]
Ren, Z.; Yuan, J.; Zhang, Z. Robust Hand Gesture Recognition Based on Finger-Earth Mover's Distance with a Commodity Depth Camera. Proceedings of the 19th ACM International Conference on Multimedia, Scottsdale, AZ, USA, 28 November–1 December 2011; pp. 1093–1096.
[17]
Al-Rajab, M.; Hogg, D.; Ng, K. A Comparative Study on Using Zernike Velocity Moments and Hidden Markov Models for Hand Gesture Recognition. Articulated Motion and Deformable Objects, Mallorca, Spain, 9–11 July 2008; pp. 319–327.
[18]
Oikonomidis, I.; Kyriazis, N.; Argyros, A. Efficient Model-Based 3d Tracking of Hand Articulations Using Kinect. Proceedings of the British Machine Vision Conference, Dundee, Scotland, 29 August–2 September 2011; pp. 101.1–101.11.
[19]
Wen, Y.; Hu, C.; Yu, G.; Wang, C. A Robust Method of Detecting Hand Gestures Using Depth Sensors. Proceedings of the 2012 IEEE International Workshop on Haptic Audio Visual Environments and Games (HAVE), Munich, Germany, 8–9 October 2012; pp. 72–77.
[20]
Gasparini, F.; Schettini, R. Skin Segmentation Using Multiple Thresholding. Proceedings of the SPIE Internet Imaging, San Jose, CA, USA, 16–18 January 2006; pp. 1–8.
[21]
Rowley, H.A.; Baluja, S.; Kanade, T. Neural network-based face detection. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 23–38.
[22]
Viola, P.; Jones, M.J. Robust real-time face detection. Int. J. Comput. Vis. 2004, 57, 137–154.
[23]
Burgin, W.; Pantofaru, C.; Smart, W.D. Using Depth Information to Improve Face Detection. Proceedings of the 6th International Conference on Human-Robot Interaction, Lausanne, Switzerland, 6–9 March 2011; pp. 119–120.
[24]
Habili, N.; Lim, C.C.; Moini, A. Hand and Face Segmentation Using Motion and Colour Cues in Digital Image Sequences. Proceedings of the IEEE International Conference on Multimedia and Expo, Tokyo, Japan, 22–25 August 2001; pp. 261–264.