全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

A Linearization Time-Domain CMOS Smart Temperature Sensor Using a Curvature Compensation Oscillator

DOI: 10.3390/s130911439

Keywords: curvature compensation, smart temperature sensor, oscillator, time-domain, delay line

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents an area-efficient time-domain CMOS smart temperature sensor using a curvature compensation oscillator for linearity enhancement with a ?40 to 120 °C temperature range operability. The inverter-based smart temperature sensors can substantially reduce the cost and circuit complexity of integrated temperature sensors. However, a large curvature exists on the temperature-to-time transfer curve of the inverter-based delay line and results in poor linearity of the sensor output. For cost reduction and error improvement, a temperature-to-pulse generator composed of a ring oscillator and a time amplifier was used to generate a thermal sensing pulse with a sufficient width proportional to the absolute temperature (PTAT). Then, a simple but effective on-chip curvature compensation oscillator is proposed to simultaneously count and compensate the PTAT pulse with curvature for linearization. With such a simple structure, the proposed sensor possesses an extremely small area of 0.07 mm 2 in a TSMC 0.35-mm CMOS 2P4M digital process. By using an oscillator-based scheme design, the proposed sensor achieves a fine resolution of 0.045 °C without significantly increasing the circuit area. With the curvature compensation, the inaccuracy of ?1.2 to 0.2 °C is achieved in an operation range of ?40 to 120 °C after two-point calibration for 14 packaged chips. The power consumption is measured as 23 mW at a sample rate of 10 samples/s.

References

[1]  Krummenacher, P.; Oguey, H. Smart temperature sensor in CMOS technology. Sens. Actuators A: Phys. 1990, 22, 636–638.
[2]  Meijer, G.C.; Wang, M.G.; Fruett, F. Temperature sensors and voltage references implemented in CMOS technology. IEEE Sens. J. 2001, 1, 225–234.
[3]  Pertijs, M.A.P.; Makinwa, K.A.A.; Huijsing, J.H. A CMOS smart temperature sensor with a 3 σ Inaccuracy of ±0.1 °C From ?55 °C to 125 °C. IEEE J. Solid-State Circuit 2005, 40, 2805–2815.
[4]  Souri, K.; Kashmiri, M.; Makinwa, K.A.A. A CMOS Temperature Sensor with an Energy-Efficient Zoom ADC and an Inaccuracy of ±0.25 °C (3 σ) from ?40 to 125 °C. Proceedings of 2010 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 7–11 February 2010; pp. 310–311.
[5]  Chen, C.-C.; Chen, P.; Liu, A.-W.; Lu, We.-F.; Chang, Y.-C. An accurate CMOS delay-line-based smart temperature sensor for low-power low-cost systems. Meas. Sci. Technol. 2006, 17, 840–846.
[6]  Chen, P.; Shie, M.-C.; Zheng, Z.-Y.; Zheng, Z.-F.; Chu, C.-Y. A fully digital time-domain smart temperature sensor realized with 140 FPGA logic elements. IEEE Trans. Circuit Syst. I 2007, 54, 2661–2668.
[7]  Lin, Y.-S.; Sylvester, D.; Blaauw, D. An Ultra Low Power 1 V, 220 nW Temperature Sensor for Passive Wireless Applications. Proceedings of 2008 IEEE Custom Integrated Circuits Conference (CICC), San Jose, CA, USA, 21–24 September 2008; pp. 507–510.
[8]  Law, M.K.; Bermak, A. A 405-nW CMOS temperature sensor based on linear MOS operation. IEEE Trans. Circuit Syst. II 2009, 56, 891–895.
[9]  Chung, C.-C.; Yang, C.-R. An autocalibrated all-digital temperature sensor for on-chip thermal monitoring. IEEE Trans. Circuit Syst. II 2011, 58, 105–109.
[10]  Chen, P.; Chen, S.-C.; Shen, Y.-S.; Peng, Y.-J. A all-digital time-domain smart temperature sensor realized with 48 FPGA logic elements with one-point calibration support. IEEE Trans. Circuit Syst. I 2011, 58, 913–920.
[11]  Kim, K.; Lee, H.; Kim, C. 366-Ks/s 1.09-nJ 0.0013-mm2 frequency-to-digital converter based CMOS temperature sensor utilizing multiphase clock. IEEE Trans. VLSI 2012, 20, 1–5.
[12]  Chen, P.; Chen, C.-C.; Peng, Y.-H.; Wang, K.-M.; Wang, Y.-S. A time-domain SAR smart temperature sensor with curvature compensation and a 3 σ Inaccuracy of 0.4 °C~ + 0.6 °C over a 0 °C to 90 °C Range. IEEE J. Solid-State Circuit 2010, 45, 600–609.
[13]  Saneyoshi, E.; Nose, K.; Kajita, M.; Mizuno, M. A 1.1 35 μm × 35 μm Thermal Sensor with Supply Voltage Sensitivity of 2 °C/10%-Supply for Thermal Management on the SX-9 Supercomputer. Proceedings of 2008 IEEE Symposium on VLSI Circuits, Honolulu, HI, USA, 18–20 June 2008; pp. 152–153.
[14]  Demassa, T.A.; Ciccone, Z. Digital Integrated Circuits, 1st ed. ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1996.
[15]  Tsividis, Y. Operation and Modeling of the MOS Transistor Second Edition, 2nd ed. ed.; McGraw-Hill: New York, NY, USA, 1999.
[16]  Filanovsky, I.M.; Allam, A. Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits. IEEE Trans. Circuit Syst. I 2001, 48, 876–884.
[17]  Laker, K.R.; Sansen, W.M.C. Design of Analog Integrated Circuits and Systems, 1st ed. ed.; McGraw-Hill: New York, NY, USA, 1994.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133