We demonstrate a refractive index sensor based on a long period grating (LPG) inscribed in a special photosensitive microfiber with double-clad profile. The fiber is tapered gradually enough to ensure the adiabaticity of the fiber taper. In other words, the resulting insertion loss is sufficiently small. The boron and germanium co-doped inner cladding makes it suitable for inscribing gratings into its tapered form. The manner of wavelength shift for refractive indices (RIs) differs from conventional LPG, and the refractive index detection limit is 1.67 × 10 ?5.
Allsop, T.; Floreani, F.; Jedrzejewski, K.P.; Marques, P.V.S.; Romero, R.; Webb, D.J.; Bennion, I. Spectral characteristics of tapered LPG device as a sensing element for refractive index and temperature. J. Light. Technol. 2006, 24, 870–878.
[16]
Love, J.D. Application of a low-loss criterion to optical waveguides and devices. IEEE Proc. J. Optoelectron. 1989, 136, 225–228.
[17]
Taylor, H.F.; Yariv, A. Guided wave optics. Proc. IEEE 1974, 62, 1044–1060.
[18]
Ji, W.B.; Liu, H.H.; Tjin, S.C.; Chow, K.K.; Lim, A. Ultrahigh sensitivity refractive index sensor based on optical microfiber. IEEE Photonic. Technol. Lett. 2012, 24, 1872–1874.
Hou, R.; Ghassemlooy, Z.; Hassan, A.; Lu, C.; Dowker, K.P. Modelling of long-period fibre grating response to refractive index higher than that of cladding. Meas. Sci. Technol. 2001, 12, 1709–1713.
[24]
Duhem, O.; Henninot, J.-F.; Warenghem, M.; Douay, M. Demonstration of long-period grating efficient couplings with an external medium of a refractive index higher than that of silica. Appl. Opt. 1998, 37, 7223–7228.