We describe a MALDI-TOF ion detector based on freestanding silicon nanomembrane technology. The detector is tested in a commercial MALDI-TOF mass spectrometer with equimolar mixtures of proteins. The operating principle of the nanomembrane detector is based on phonon-assisted field emission from these silicon nanomembranes, in which impinging ion packets excite electrons in the nanomembrane to higher energy states. Thereby the electrons can overcome the vacuum barrier and escape from the surface of the nanomembrane via field emission. Ion detection is demonstrated of apomyoglobin (16,952 Da), aldolase (39,212 Da), bovine serum albumin (66,430 Da), and their equimolar mixtures. In addition to the three intact ions, a large number of fragment ions are also revealed by the silicon nanomembrane detector, which are not observable with conventional detectors.
References
[1]
Wiley, W.C.; Mclaren, I.H. Time-of-flight mass spectrometer with improved resolution. Rev. Sci. Instrum. 1955, 26, 1150–1157.
[2]
Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T.; Matsuo, T. Protein and polymer analyses up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom 1988, 2, 151–153.
[3]
Karas, M.; Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 1988, 60, 2299–2301.
[4]
Geno, P.W. Mass Spectrometry in the Biological Sciences: A Tutorial, Ion Detection in MS; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992.
[5]
Chen, X.; Westphall, M.S.; Smith, L.M. Mass spectrometric analysis of DNA mixtures: Instrumental effects responsible for decreased sensitivity with increasing mass. Anal. Chem. 2003, 75, 5944–5952.
[6]
De Hoffmann, E.; Stroobant, V. Mass Spectrometry: Principles and Applications, 3rd ed. ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2007.
[7]
Park, J.; Qin, H.; Scalf, M.; Hilger, R.T.; Westphall, M.S.; Smith, L.M.; Blick, R.H. A mechanical nanomembrane detector for time-of-flight mass spectrometry. Nano Lett. 2011, 11, 3681–3684.
[8]
Park, J.; Kim, H.; Blick, R.H. Quasi-dynamic mode of nanomembranes for time-of-flight mass spectrometry of proteins. Nanoscale 2012, 2, 2543–2548.
[9]
Park, J.; Aksamija, Z.; Shin, H.-C.; Kim, H.; Blick, R.H. Phonon-assisted field emission in silicon nanomembranes for time-of-flight mass spectrometry of proteins. Nano Lett. 2013, 13, 2698–2703.
[10]
Fowler, R.H.; Nordheim, L. Electron emission in intense electric fields. Proc. R. Soc. Lond. Ser. A. 1928, 119, 173–181.
[11]
Landau, L.D.; Lifshitz, E.M. Theory of Elasticity, 3rd ed. ed.; Pergamon Press: New York, NY, USA, 1986.
[12]
Murphy, E.L.; Good, H.R. Thermionic emission, field emission, and the transition region. Phys. Rev. 1956, 102, 1464–1473.
[13]
Richardson, O.A. The electrical conductivity imparted to a vacuum by hot conductors. Philos. Trans. R. Soc. Lond. Ser. A. 1903, 201, 497–549.
[14]
Nottingham, W.B. Remarks on energy losses attending thermionic emission of electrons from metals. Phys. Rev. 1941, 59, 906–907.
[15]
Charbonnier, F.M.; Strayer, R.W.; Swanson, L.W.; Martin, E.E. Nottingham effect in field and T-F emission: Heating and cooling domains, and inversion temperature. Phys. Rev. Lett. 1964, 13, 397–401.
Katta, V.; Chow, D.; Rohde, M. Applications of in-source fragmentation of protein ions for direct sequence analysis by delayed extraction MALDI-TOF mass spectrometry. Anal. Chem. 1998, 70, 4410–4416.