全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Development of a Multiplex Sandwich Aptamer Microarray for the Detection of VEGF165 and Thrombin

DOI: 10.3390/s131013425

Keywords: VEGF, thrombin, aptamers, sandwich aptamer-microarray, angiogenesis

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this work we have developed a multiplex microarray system capable of detecting VEGF 165 and thrombin. We recently described a Sandwich Aptamer Microarray (SAM) for thrombin detection feasible for use in multiplex microarrays; here we describe a new aptasensor for VEGF 165 detection employing Vap7 and VEa5, two DNA aptamers recognizing different sites of the protein. The aptamers were modified to be adapted to the solid phase platform of SAM and their capability to simultaneously recognize VEGF 165 by forming a ternary complex was analyzed in solution. Having so defined the best tandem arrangement of modified aptamers, we set up the aptasensor for VEGF 165, and finally analyzed the multiplex system with the two aptasensors for the simultaneous detection of VEGF 165 and thrombin. The results indicate that each sandwich is specific, even when the two proteins are mixed. The system performance is consistent with the behavior evidenced by the biochemical analysis, which proves to be valuable to drive the evaluation and refinement of aptamers prior to or along the development of a detection platform. Since thrombin upregulates VEGF expression, the simultaneous recognition of these two proteins could be useful in the analysis of biomarkers in pathologies characterized by neo-angiogenesis.

References

[1]  Song, K.M.; Lee, S.; Ban, C. Aptamers and their biological applications. Sensors 2012, 12, 612–631.
[2]  Ni, X.; Castanares, M.; Mukherjee, A.; Lupold, S.E. Nucleic acid aptamers: Clinical applications and promising new horizons. Curr. Med. Chem. 2011, 18, 4206–4214.
[3]  McKeague, M.; Derosa, M.C. Challenges and opportunities for small molecule aptamer development. J. Nucle. Acids 2012, 2012, 748913.
[4]  Meneghello, A.; Sosic, A.; Antognoli, A.; Cretaio, E.; Gatto, B. Development and optimization of a thrombin sandwich aptamer microarray. Microarrays 2012, 1, 95–106.
[5]  Sosic, A.; Meneghello, A.; Cretaio, E.; Gatto, B. Human thrombin detection through a sandwich aptamer microarray: Interaction analysis in solution and in solid phase. Sensors 2011, 11, 9426–9441.
[6]  Huang, Y.Q.; Li, J.J.; Hu, L.; Lee, M.; Karpatkin, S. Thrombin induces increased expression and secretion of VEGF from human FS4 fibroblasts, DU145 prostate cells and CHRF megakaryocytes. Thromb Haemost 2001, 86, 1094–1098.
[7]  Tsopanoglou, N.E.; Pipili-Synetos, E.; Maragoudakis, M.E. Thrombin promotes angiogenesis by a mechanism independent of fibrin formation. Am. J. Physiol. 1993, 264, C1302–C1307.
[8]  Haralabopoulos, G.C.; Grant, D.S.; Kleinman, H.K.; Maragoudakis, M.E. Thrombin promotes endothelial cell alignment in Matrigel in vitro and angiogenesis in vivo. Am. J. Physiol. 1997, 273, C239–C245.
[9]  Bian, Z.M.; Elner, S.G.; Elner, V.M. Thrombin-induced VEGF expression in human retinal pigment epithelial cells. Invest. Ophthal. Vis. Sci. 2007, 48, 2738–2746.
[10]  Strande, J.L.; Phillips, S.A. Thrombin increases inflammatory cytokine and angiogenic growth factor secretion in human adipose cells in vitro. J. Inflamm (Lond) 2009, 6, 4.
[11]  Folkman, J. Tumor angiogenesis in women with node-positive breast cancer. Cancer J. Sci. Am. 1995, 1, 106–108.
[12]  Scappaticci, F.A. Mechanisms and future directions for angiogenesis-based cancer therapies. J. Clin. Oncol 2002, 20, 3906–3927.
[13]  Bressler, S.B. Introduction: Understanding the role of angiogenesis and antiangiogenic agents in age-related macular degeneration. Ophthalmology 2009, 116, S1–S7.
[14]  Weidner, N. Intratumor microvessel density as a prognostic factor in cancer. Am. J. Pathol. 1995, 147, 9–19.
[15]  Ferrara, N. Vascular endothelial growth factor as a target for anticancer therapy. Oncologist 2004, 9, 2–10.
[16]  Koch, A.E. Angiogenesis as a target in rheumatoid arthritis. Ann. Rheum Dis. 2003, 62, ii60–ii67.
[17]  Ferrara, N. Vascular endothelial growth factor and age-related macular degeneration: From basic science to therapy. Nat. Med. 2010, 16, 1107–1111.
[18]  Kraft, A.; Weindel, K.; Ochs, A.; Marth, C.; Zmija, J.; Schumacher, P.; Unger, C.; Marme, D.; Gastl, G. Vascular endothelial growth factor in the sera and effusions of patients with malignant and nonmalignant disease. Cancer 1999, 85, 178–187.
[19]  Muller, Y.A.; Christinger, H.W.; Keyt, B.A.; de Vos, A.M. The crystal structure of vascular endothelial growth factor (VEGF) refined to 1.93 A resolution: Multiple copy flexibility and receptor binding. Structure 1997, 5, 1325–1338.
[20]  Wiesmann, C.; Fuh, G.; Christinger, H.W.; Eigenbrot, C.; Wells, J.A.; de Vos, A.M. Crystal structure at 1.7 A resolution of VEGF in complex with domain 2 of the Flt-1 receptor. Cell 1997, 91, 695–704.
[21]  Ferrara, N.; Gerber, H.P.; LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 2003, 9, 669–676.
[22]  Bhisitkul, R.B. Vascular endothelial growth factor biology: clinical implications for ocular treatments. Br. J. Ophthalmol 2006, 90, 1542–1547.
[23]  Hasegawa, H.; Sode, K.; Ikebukuro, K. Selection of DNA aptamers against VEGF165 using a protein competitor and the aptamer blotting method. Biotech. Lett. 2008, 30, 829–834.
[24]  Kaur, H.; Yung, L.Y. Probing high affinity sequences of DNA aptamer against VEGF165. PLoS One 2012, 7, e31196.
[25]  Nonaka, Y.; Sode, K.; Ikebukuro, K. Screening and improvement of an anti-VEGF DNA aptamer. Molecules 2010, 15, 215–225.
[26]  Ferrara, N.; Houck, K.A.; Jakeman, L.B.; Winer, J.; Leung, D.W. The vascular endothelial growth factor family of polypeptides. J. Cell. Biochem. 1991, 47, 211–218.
[27]  Keyt, B.A.; Berleau, L.T.; Nguyen, H.V.; Chen, H.; Heinsohn, H.; Vandlen, R.; Ferrara, N. The carboxyl-terminal domain (111–165) of vascular endothelial growth factor is critical for its mitogenic potency. J. Biol. Chem. 1996, 271, 7788–7795.
[28]  Tasset, D.M.; Kubik, M.F.; Steiner, W. Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. J. Mol. Biol. 1997, 272, 688–698.
[29]  Bock, L.C.; Griffin, L.C.; Latham, J.A.; Vermaas, E.H.; Toole, J.J. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 1992, 355, 564–566.
[30]  Huang, Y.Q.; Li, J.J.; Hu, L.; Lee, M.; Karpatkin, S. Thrombin induces increased expression and secretion of angiopoietin-2 from human umbilical vein endothelial cells. Blood 2002, 99, 1646–1650.
[31]  Vermeulen, P.B.; Salven, P.; Benoy, I.; Gasparini, G.; Dirix, L.Y. Blood platelets and serum VEGF in cancer patients. Br. J. Cancer 1999, 79, 370–373.
[32]  Gunsilius, E.; Gastl, G. Platelets and VEGF blood levels in cancer patients. Br. J. Cancer 1999, 81, 185–186.
[33]  Li, Y.; Lee, H.J.; Corn, R.M. Detection of protein biomarkers using RNA aptamer microarrays and enzymatically amplified surface plasmon resonance imaging. Anal. Chem. 2007, 79, 1082–1088.
[34]  Cho, H.; Yeh, E.C.; Sinha, R.; Laurence, T.A.; Bearinger, J.P.; Lee, L.P. Single-step nanoplasmonic VEGF165 aptasensor for early cancer diagnosis. ACS Nano 2012, 6, 7607–7614.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133