全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Lower Limb Wearable Capacitive Sensing and Its Applications to Recognizing Human Gaits

DOI: 10.3390/s131013334

Keywords: wearable gait sensors, human body capacitance, capacitive sensing, muscle shape changes, human normal gaits, pattern recognition

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we present an approach to sense human body capacitance and apply it to recognize lower limb locomotion modes. The proposed wearable sensing system includes sensing bands, a signal processing circuit and a gait event detection module. Experiments on long-term working stability, adaptability to disturbance and locomotion mode recognition are carried out to validate the effectiveness of the proposed approach. Twelve able-bodied subjects are recruited, and eleven normal gait modes are investigated. With an event-dependent linear discriminant analysis classifier and feature selection procedure, four time-domain features are used for pattern recognition and satisfactory recognition accuracies (97:3% ± 0:5%, 97:0% ± 0:4%, 95:6% ± 0:9% and 97:0% ± 0:4% for four phases of one gait cycle respectively) are obtained. The accuracies are comparable with that from electromyography-based systems and inertial-based systems. The results validate the effectiveness of the proposed lower limb capacitive sensing approach in recognizing human normal gaits.

References

[1]  Luo, R.C. Sensor technologies and microsensor issues for mechatronics systems. IEEE/ASME Trans. Mechatron. 1996, 1, 39–49.
[2]  Wimmer, R.; Kranz, M.; Boring, S.; Schmdt, A. A Capacitive Sensing Toolkit for Pervasive Activity Detection and Recognition. Proceedings of Fifth Annual IEEE International Conference on Pervasive Computing and Communications (PerCom 2007), White Plains, NY, USA, 19–23 March 2007; pp. 171–180.
[3]  Cheng, J.; Bannach, D.; Lukowicz, P. On Body Capacitive Sensing for A Simple Touchless User Interface. Proceedings of 5th International Summer School and Symposium on Medical Devices and Biosensors (ISSS-MDBS 2008), Hong Kong, 1–3 June 2008; pp. 113–116.
[4]  Chen, B.; Zheng, E.; Fan, X.; Liang, T.; Wang, Q.; Wei, K.; Wang, L. Locomotion mode classification using a wearable capacitive sensing system. IEEE Trans. Neur. Sys. Reh. Eng. 2013, 21, 744–755.
[5]  Cheng, M.Y.; Lin, C.L.; Lai, Y.T.; Yang, Y.J. A polymer-based capacitive sensing array for normal and shear force measurement. Sensors 2010, 10, 10211–10225.
[6]  Dai, C.L.; Lu, P.W.; Chang, C.; Liu, C.Y. Capacitive micro pressure sensor integrated with a ring oscillator circuit on chip. Sensors 2009, 9, 10158–10170.
[7]  Ulmen, J.; Cutkosky, M. A Robust, Low-Cost and Low-Noise Artificial Skin for Human-Friendly Robots. Proceedings of IEEE International Conference on Robotics and Automation (ICRA 2000), Anchorage, AK, USA, 3–7 May 2010; pp. 4836–4841.
[8]  Schmitz, A.; Maiolino, P.; Maggiali, M.; Natale, L.; Cannata, G.; Metta, G. Methods and technologies for the implementation of large-scale robot tactile sensors. IEEE Trans. Robot. 2011, 27, 389–400.
[9]  George, B.; Zangl, H.; Bretterklieber, T.; Brasseur, G. A Combined inductive-capacitive proximity sensor for seat occupancy detection. IEEE Trans. Instrum. Meas. 2010, 59, 1463–1470.
[10]  Aezinia, F.; Wang, Y.; Bahreyni, B. Three dimensional touchless tracking of objects using integrated capacitive sensors. IEEE Tran. Consum. Electron. 2012, 58, 886–890.
[11]  Wang, F.; Marashdeh, Q.; Fan, L.S.; Fan, L.S.; Warsito, W. Electrical capacitance volume tomography: design and applications. Sensors 2010, 10, 1890–1917.
[12]  Warsito, W.; Marashdeh, Q.; Fan, L.S. Electrical capacitance volume tomography. IEEE Sens. J. 2007, 7, 525–535.
[13]  Ueno, A.; Akabane, Y.; Kato, T.; Hoshino, H.; Kataoka, S.; Ishiyama, Y. Capacitive sensing of electrocardiographic potential through cloth from the dorsal surface of the body in a supine position: A preliminary study. IEEE Trans. Biomed. Eng. 2007, 54, 759–766.
[14]  Oehler, M.; Ling, V.; Melhorn, K.; Schilling, M. A multichannel portable ECG system with capacitive sensors. Physiol. Meas. 2008, 29, 783–793.
[15]  Peng, G.C.; Bocko, M.F. Non-contact ECG sensing employing gradiometer electrodes. IEEE Trans. Biomed. Eng. 2013, 60, 179–183.
[16]  Ohhashi, T.; Sakaguchi, M.; Tsuda, T. Human perspiration measurement. Physiol. Meas. 1998, 19, 449–461.
[17]  Oum, J.H.; Lee, S.E.; Kim, D.W.; Hong, S. Non-contact heartbeat and respiration detector using capacitive sensor with Colpitts oscillator. Electron. Lett. 2008, 44, 87–89.
[18]  Merritt, C.R.; Nagle, H.T.; Grant, E. Textile-based capacitive sensors for respiration monitoring. IEEE Sens. J. 2009, 9, 71–78.
[19]  André, N.; Druart, S.; Dupuis, P.; Rue, B.; Gérard, P.; Flandre, D.; Raskin, J.P.; Francis, L. A. Dew-based wireless mini module for respiratory rate monitoring. IEEE Sens. J. 2012, 12, 699–706.
[20]  Rekimoto, J. Gesturewrist and Gesturepad: Unobtrusive Wearable Interaction Devices. Proceedings of Fifth International Symposium on Wearable Computers, Zurich, Switzerland, 8–9 October 2001; pp. 21–27.
[21]  Cheng, J.; Amft, O.; Lukowicz, P. Active Capacitive Sensing: Exploring A New Wearable Sensing Modality for Activity Recognition. Proceedings of 8th International Conference on Pervasive, Helsinki, Finland, 17–20 May 2010; pp. 319–336.
[22]  Susi, M.; Renaudin, V.; Lachapelle, G. Motion mode recognition and step detection algorithms for mobile phone users. Sensors 2013, 13, 1539–1562.
[23]  Karantonis, D.M.; Narayanan, M.R.; Mathie, M.; Lovell, N.H.; Celler, B.G. Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Trans. Info. Tech. Biomed. 2006, 10, 156–167.
[24]  Franz, J.R.; Paylo, K.W.; Dicharry, J.; Riley, P.O.; Kerrigan, D.C. Changes in the coordination of hip and pelvis kinematics with mode of locomotion. Gait Posture 2009, 29, 494–498.
[25]  Presacco, A.; Forrester, L.W.; Contreras-Vidal, J.L. Decoding intra-limb and inter-limb kinematics during treadmill walking from scalp electroencephalographic (EEG) signals. IEEE Trans. Neur. Sys. Reh. Eng. 2012, 20, 212–219.
[26]  Au, S.; Berniker, M.; Herr, H. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits. Neural Netw. 2008, 21, 654–666.
[27]  Li, D.; Becker, A.; Shorter, K.A.; Bretl, T.; Hsiao-Wecksler, E.T. Estimating system state during human walking with a powered ankle-foot orthosis. IEEE/ASME Trans. Mechatron. 2011, 16, 835–844.
[28]  Yuan, K.; Zhu, J.; Wang, Q.; Wang, L. Finite-State Control of Powered Below-Knee Prosthesis with Ankle and Toe. Proceedings of the 18th World Congress of the International Federation of Automatic Control (IFAC 2011), Milano, Italy, 28 August–2 September 2011; pp. 2865–2870.
[29]  Peeraer, L.; Aeyels, B.; van der Perre, G. Development of EMG-based mode and intent recognition algorithms for a computer-controlled above-knee prosthesis. J. Biomed. Eng. 1990, 12, 178–182.
[30]  Huang, H.; Kuiken, T.A.; Lipschutz, R.D. A strategy for identifying locomotion modes using surface electromyography. IEEE Trans. Biomed. Eng. 2009, 56, 65–73.
[31]  Hargrove, L.J.; Li, G.; Englehart, K.B.; Hudgins, B.S. Principal components analysis preprocessing for improved classification accuracies in pattern-recognition-based myoelectric control. IEEE Trans. Biomed. Eng. 2009, 56, 1407–1414.
[32]  Yang, A.Y.; Jafari, R.; Sastry, S.S.; Bajcsy, R. Distributed recognition of human actions using wearable motion sensor networks. J. Ambient Intell. Smart Environ. 2009, 1, 103–115.
[33]  Atallah, L.; Lo, B.; Ali, R.; Yang, G.Z. Real-time activity classification using ambient and wearable sensors. IEEE Trans. Info. Tech. Biomed. 2009, 13, 1031–1039.
[34]  Yuan, K.; Sun, S.; Wang, Z.; Wang, Q.; Wang, L. A Fuzzy Logic Based Terrain Identification Approach to Prosthesis Control Using Multi-Sensor Fusion. Proceedings of 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 3361–3366.
[35]  Bunderson, N.E.; Kuiken, T.A. Quantification of feature space changes with experience during electromyogram pattern recognition control. IEEE Trans. Neur. Sys. Reh. Eng. 2012, 20, 239–246.
[36]  Laferriere, P.; Lemaire, E.D.; Chan, A.D.C. Surface electromyographic signals using dry electrodes. IEEE Trans. Instrum. Meas. 2011, 60, 3259–3268.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133