Projector-camera systems are currently used in a wide field of applications, such as 3D reconstruction and augmented reality, and can provide accurate measurements, depending on the configuration and calibration. Frequently, the calibration task is divided into two steps: camera calibration followed by projector calibration. The latter still poses certain problems that are not easy to solve, such as the difficulty in obtaining a set of 2D–3D points to compute the projection matrix between the projector and the world. Existing methods are either not sufficiently accurate or not flexible. We propose an easy and automatic method to calibrate such systems that consists in projecting a calibration pattern and superimposing it automatically on a known printed pattern. The projected pattern is provided by a virtual camera observing a virtual pattern in an OpenGL model. The projector displays what the virtual camera visualizes. Thus, the projected pattern can be controlled and superimposed on the printed one with the aid of visual servoing. Our experimental results compare favorably with those of other methods considering both usability and accuracy.
References
[1]
Salvi, J.; Pages, J.; Battle, J. Pattern codification strategies in structured light systems. Pattern Recognit. 2004, 37, 827–849.
[2]
Zhang, B.; Li, Y.F. Dynamic Calibration of a Structured Light System via Planar Motion. Proceedings of the IEEE /RSJ International Conference on Intelligent Robots and Systems (IROS), Edmonton, Alberta, Canada, 2–6 August 2005; pp. 133–138.
[3]
Cui, H.; Dai, N.; Yuan, T.; Cheng, X.; Liao, W. Calibration Algorithm for Structured Light 3D Vision Measuring System. Proceedings of the Congress on Image and Signal Processing (CISP′08), Sanya, China, 27–30 May 2008; Volume 2.
[4]
Lanman, D.; Crispell, D.; Taubin, G. Surround Structured Lighting for Full Object Scanning. Proceedings of Sixth International Conference on 3-D Digital Imaging and Modeling (3DIM '07), Montreal, Quebec, Canada, 21–23 August 2007.
[5]
Ouellet, J.-N.; Rochette, F.; Hebert, P. Geometric Calibration of a Structured Light System Using Circular Control Points. Proceedings of the 3D Data Processing Visualization and Transmission, Atlanta, GA, USA, 18–20 June 2008; pp. 183–190.
[6]
Sadlo, F.; Weyrich, T.; Peikert, R.; Gross, M. A Practical Structured Light Acquisition System for Point-Based Geometry and Texture. Proceedings of the Eurographics Symposium on Point-Based Graphics, Stony Brook, NY, USA, 20–21 June 2005; pp. 89–98.
[7]
DeMenthon, D.F.; Davis, L.S. Model-based object pose in 25 lines of code. Int. J. Comput. Vis. 1995, 15, 123–141.
[8]
Falcao, G.; Hurtos, N.; Massich, J.; Fofi, D. Projector–Camera Calibration Toolbox. 2009. Available online: http://code.google.com/p/procamcalib (accessed on 27 September 2013).
[9]
Shen, T.-S.; Menq, C.-H. Digital projector calibration for 3-D active vision systems. J. Manuf. Sci. Eng. 2002, 124, 126–134.
[10]
Zhang, S.; Huang, P.S. Novel method for structured light system calibration. Opt. Eng. 2006, 45, 083601.
[11]
Chen, X.; Xi, J.; Jin, Y.; Sun, J. Accurate calibration for a camera–projector measurement system based on structured light projection. Opt. Lasers Eng. 2008, 47, 310–319.
[12]
Drouin, M.-A.; Godin, G.; Roy, S. An Energy Formulation for Establishing the Correspondence Used in Projector Calibration. Proceedings of the Fourth International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT'08), Atlanta, GA, USA, June 2008; pp. 18–20.
[13]
Gao, W.; Wang, L.; Hu, Z. Flexible calibration of a portable structured light system through surface plane. Acta Autom. Sin. 2008, 1358–1362.
[14]
Drareni, J.; Sturm, P.; Roy, S. Projector Calibration Using a Markerless Plane. Proceedings of the International Conference on Computer Vision Theory and Applications, Lisbon, Portugal, 5–8 February 2009; Volume 2, pp. 377–382.
[15]
Audet, S.; Okutomi, M. A User-Friendly Method to Geometrically Calibrate Projector–Camera Systems. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops 2009), Miami, FL, USA, 20–25 June 2009; pp. 47–54.
[16]
Mosnier, J.; Berry, F.; Ait-Aider, O. A New Method for Projector Calibration based on Visual Servoing. Proceedings of the IAPR Conference on Machine Vision Applications, Kanagawa, Japan, 20–22 May 2009; pp. 25–29.
[17]
Zhang, Z. Flexible Camera Calibration by Viewing a Plane from Unknown Orientations. Proceedings of the Seventh IEEE International Conference on Computer Vision (ICCV′09), Kerkyra, Greece, 20–27 September 1999; pp. 666–673.