全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Application of a Coaxial-Like Sensor for Impedance Spectroscopy Measurements of Selected Low-Conductivity Liquids

DOI: 10.3390/s131013301

Keywords: trisodium citrate, aqueous solutions of salts, food additives, constant phase element

Full-Text   Cite this paper   Add to My Lib

Abstract:

The paper presents a coaxial-like sensor operating in the 20 Hz–2 MHz frequency range used to determine the electrical properties of selected liquids of low electrical conductivity. Examined materials included low-concentrated aqueous solutions of potassium chloride, sodium chloride and trisodium citrate, which are common food additives. Impedance spectra of the measurement cell filled with particular liquids were obtained and analyzed using the electrical equivalent circuit approach. The values of physical quantities and parameters describing the equivalent circuit components, including a constant phase element, were calculated for each sample. The applied sensor was also calibrated for electrical conductivity measurements up to 8 mS/m. The constant phase element parameters differed among the studied solutions and concentrations. This may provide a basis for a detection method of small amounts of compounds, such as food additives in low-concentrated aqueous solutions. To demonstrate the potential of the presented method, samples of purchased mineral water and a flavored drink containing various additives were tested.

References

[1]  Grasso, F.; Musumeci, F.; Triglia, A. Impedance spectroscopy of pure water in the 0.01 Hz to 100 kHz range. Nuovo Cim. 1990, 12, 1117–1130.
[2]  Becchi, M.; Avenda?o, C.; Strigazzi, A.; Barbero, G. Impedance spectroscopy of water solutions: The role of ions at the liquid-electrode interface. J. Phys. Chem. B 2005, 109, 23444–23449.
[3]  Lelidis, I.; Barbero, G. Effect of different anionic and cationic mobilities on the impedance spectroscopy measurements. Phys. Lett. A 2005, 343, 440–445.
[4]  Prodan, C.; Bot, C. Correcting the polarization effect in very low frequency dielectric spectroscopy. J. Phys. D: Appl. Phys. 2009, 42, 175505:1–175505:10.
[5]  Barsoukov, E.; Macdonald, J.R. Impedance Spectroscopy: Theory, Experiment, and Applications; John Wiley & Sons, Inc.: Hoboken, USA, 2005.
[6]  Ahmed, R.; Reifsnider, K. Study of influence of electrode geometry on impedance spectroscopy. Int. J. Electrochem. Sci. 2011, 6, 1159–1174.
[7]  Maddala, J.; Sambath, K.; Kumar, V.; Ramanathan, S. Identification of reaction mechanism for anodic dissolution of metals using electrochemical impedance spectroscopy. J. Electroanal. Chem. 2010, 638, 183–188.
[8]  Barbero, G.; Becchi, M.; Strigazzi, A.; Le Digabel, J.; Figueiredo Neto, A.M. Experimental evidence for the adsorption-desorption phenomenon on the spectroscopy impedance measurements of an electrolytic cell. J. Appl. Phys. 2007, 101, 044102:1–044102:5.
[9]  Lasia, A. Electrochemical Impedance Spectroscopy and Its Applications. In Modern Aspects of Electrochemistry; Conway, B.E., Bockris, J., White, R.E., Eds.; Kluwer Academic/Plenum Publishers: New York, YN, USA, 1999; Volume 32, pp. 143–248.
[10]  Zhang, D.; Haran, B.S.; Durairajan, A.; White, R.E.; Podrazhansky, Y.; Popov, B.N. Studies on capacity fade of lithium-ion batteries. J. Power Sources 2000, 91, 122–129.
[11]  Jenseit, W.; B?hme, O.; Leidich, F.U.; Wendt, H. Impedance spectroscopy: A method for in situ characterization of experimental fuel cells. Electrochim. Acta 1993, 38, 2115–2120.
[12]  Tura, A.; Sbrignadello, S.; Barison, S.; Conti, S.; Pacini, G. Impedance spectroscopy of solutions at physiological glucose concentrations. Biophys. Chem. 2007, 129, 235–241.
[13]  Shervedani, R.K.; Mehrjardi, A.H.; Zamiri, N. A novel method for glucose determination based on electrochemical impedance spectroscopy using glucose oxidase self-assembled biosensor. Bioelectrochemistry 2006, 69, 201–208.
[14]  Guitián, B.; Nóvoa, X.R.; Puga, B. Electrochemical impedance spectroscopy as a tool for materials selection: Water for haemodialysis. Electrochim. Acta 2011, 56, 7772–7779.
[15]  Koelemeijer, P.J.; Peach, C.J.; Spiers, C.J. Surface diffusivity of cleaved NaCl crystals as a function of humidity: Impedance spectroscopy measurements and implications for crack healing in rock salt. J. Geophys. Res. 2012, 117, B01205.
[16]  Harrington, D.A.; van den Driessche, P. Mechanism and equivalent circuits in electrochemical impedance spectroscopy. Electrochim. Acta 2011, 56, 8005–8013.
[17]  Macdonald, D.D. Reflections on the history of electrochemical impedance spectroscopy. Electrochim. Acta 2006, 51, 1376–1388.
[18]  García, A.; Torres, J.L.; De Blas, M.; De Francisco, A.; Illanes, R. Dielectric characteristics of grape juice and wine. Biosyst. Eng. 2004, 88, 343–349.
[19]  Nelson, S.O. Dielectric spectroscopy in agriculture. J. Non-Cryst. Solids 2005, 351, 2940–2944.
[20]  Guo, W.; Trabelsi, S.; Nelson, S.O.; Jones, D.R. Storage effects on dielectric properties of eggs from 10 to 1800 MHz. J. Food Sci. 2007, 72, E335–E340.
[21]  Skierucha, W.; Wilczek, A. A FDR sensor for measuring complex soil dielectric permittivity in the 10–500 MHz frequency range. Sensors 2010, 10, 3314–3329.
[22]  Sosa-Morales, M.E.; Valerio-Junco, L.; Lopez-Malo, A.; García, H.S. Dielectric properties of foods: Reported data in the 21st century and their potential applications. LWT-Food Sci. Technol. 2010, 43, 1169–1179.
[23]  Guo, W.; Zhu, X.; Yue, R.; Liu, H.; Liu, Y. Dielectric properties of Fuji apples from 10 to 4500 MHz during storage. J. Food Process. Preserv. 2011, 35, 884–890.
[24]  Wilczek, A.; Szyp?owska, A.; Skierucha, W.; Cie?la, J.; Pichler, V.; Janik, G. Determination of soil pore water salinity using an FDR sensor working at various frequencies up to 500 MHz. Sensors 2012, 12, 10890–10905.
[25]  Skierucha, W.; Wilczek, A.; Szyp?owska, A. Dielectric spectroscopy in agrophysics. Int. Agrophys. 2012, 26, 187–197.
[26]  ?uczycka, D.; Nowakowski, P.; Szewczyk, A.; Pruski, K.; Howis, M. Electric properties in commodity-science evaluation of honey. Acta Agrophysica 2012, 19, 749–759.
[27]  ?uczycka, D.; Czubaszek, A.; Fujarczuk, M.; Pruski, K. Dielectric properties of wheat flour mixed with oat meal. Int. Agrophys. 2013, 27, 175–180.
[28]  Cseresnyés, I.; Fekete, G.; Végh, K.R.; Székács, A.; M?rtl, M.; Rajkai, K. Monitoring of herbicide effect in maize based on electrical measurements. Int. Agrophys. 2012, 26, 243–247.
[29]  Cie?la, J.; Bieganowski, A.; Janczarek, M.; Urbanik–Sypniewska, T. Determination of the electrokinetic potential of Rhizobium leguminosarum bv trifolii Rt24.2 using Laser Doppler Velocimetry-A methodological study. J. Microbiol. Method. 2011, 85, 199–205.
[30]  Power, A.; Duncan, N.; Singh, S.K.; Brown, W.; Dalby, E.; Edwards, C.; Lynch, K.; Prout, V.; Cairns, T.; Griffith, M.; et al. Sodium citrate versus heparin catheter locks for cuffed central venous catheters: A single-center randomized controlled trial. Am. J. Kidney Dis. 2009, 53, 1034–1041.
[31]  ASTM Standard A967-01, 2001. Standard Specification for Chemical Passivation Treatments for Stainless Steel Parts; ASTM International: West Conshohocken, PA, USA, 2001.
[32]  Wilczek, A.; Skierucha, W.; Szyp?owska, A.; Solecki, G. Determination of the Soil Complex Dielectric Permittivity from the Measured Reflection Coefficient—A Multi-Rod Probe and FDR Model Calibration. Proceedings of International Conference on Electromagnetic Wave Interaction with Water and Moist Substances ISEMA2013, Weimar, Germany. Submitted, 25–27 September 2013.
[33]  Bondarenko, A.S.; Ragoisha, G.A. Progress in Chemometrics Research; Pomerantsev, A.L., Ed.; Nova Science Publishers: New York, NY, USA, 2005; pp. 89–102.
[34]  Nakonieczna, A.; Solecki, G.; Szyp?owska, A.; Wilczek, A.; Paszkowski, B.; Skierucha, W. Broadband Impedance Spectra of Liquid Materials of Agricultural Origin (in Polish). Proceedings of International Scientific Conference “Agrophysics in Bioengineering” (Miedzynarodowa Konferencja Naukowa “Agrofizyka w bioin?ynierii”), Wroc?aw, Poland, 18–19 September 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133