全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Simple and Rapid Determination of Ferulic Acid Levels in Food and Cosmetic Samples Using Paper-Based Platforms

DOI: 10.3390/s131013039

Keywords: ferulic acid, paper-based platforms, electrochemical detection, colorimetric detection, TLC separation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ferulic acid is an important phenolic antioxidant found in or added to diet supplements, beverages, and cosmetic creams. Two designs of paper-based platforms for the fast, simple and inexpensive evaluation of ferulic acid contents in food and pharmaceutical cosmetics were evaluated. The first, a paper-based electrochemical device, was developed for ferulic acid detection in uncomplicated matrix samples and was created by the photolithographic method. The second, a paper-based colorimetric device was preceded by thin layer chromatography (TLC) for the separation and detection of ferulic acid in complex samples using a silica plate stationary phase and an 85:15:1 (v/v/v) chloroform: methanol: formic acid mobile phase. After separation, ferulic acid containing section of the TLC plate was attached onto the patterned paper containing the colorimetric reagent and eluted with ethanol. The resulting color change was photographed and quantitatively converted to intensity. Under the optimal conditions, the limit of detection of ferulic acid was found to be 1 ppm and 7 ppm (S/N = 3) for first and second designs, respectively, with good agreement with the standard HPLC-UV detection method. Therefore, these methods can be used for the simple, rapid, inexpensive and sensitive quantification of ferulic acid in a variety of samples.

References

[1]  Zhang, Y.T.; Xu, M.T.; Du, M.; Zhou, F.M. Comparative studies of the interaction between ferulic acid and bovine serum albumin by ACE and surface plasmon resonance. Electrophoresis 2007, 28, 1839–1845.
[2]  Buranov, A.U.; Mazza, G. Extraction and purification of ferulic acid from flax shives, wheat and corn bran by alkaline hydrolysis and pressurised solvents. Food Chem. 2009, 115, 1542–1548.
[3]  Balasubashini, M.S.; Rukkumani, R.; Viswanathan, P.; Menon, V.P. Ferulic acid alleviates lipid peroxidation in diabetic rats. Phytother. Res. 2004, 18, 310–314.
[4]  Philp, H.A. Hot flashes-A review of the literature on alternative and complementary treatment approaches. Altern. Med. Rev. 2003, 8, 284–302.
[5]  Kawabata, K.; Yamamoto, T.; Hara, A.; Shimizu, M.; Yamada, Y.; Matsunaga, K.; Tanaka, T.; Mori, H. Modifying effects of ferulic acid on azoxymethane-induced colon carcinogenesis in F344 rats. Cancer Lett. 2000, 157, 15–21.
[6]  Lesca, P. Protective effects of ellagic acid and other plant phenols on benzo [a] pyrene-induced neoplasia in mice. Carcinogenesis 1983, 4, 1651–1653.
[7]  Kim, H.K.; Jeong, T.S.; Lee, M.K.; Park, Y.B.; Choi, M.S. Lipid-lowering efficacy of hesperetin metabolites in high-cholesterol fed rats. Clini. Chim. Acta 2003, 327, 129–137.
[8]  Weon, J.B.; Ma, J.Y.; Yang, H.J.; Ma, C.J. Simultaneous determination of ferulic acid, hesperidin, 6-gingerol and glycyrrhizin in Insampaedoksan by HPLC coupled with diode array detection. J. Anal. Chem. 2012, 67, 955–959.
[9]  Silva, C.L.; Pereira, J.; Wouter, V.G.; Giro, C.; Camara, J.S. A fast method using a new hydrophilic-lipophilic balanced sorbent in combination with ultra-high performance liquid chromatography for quantification of significant bioactive metabolites in wines. Talanta 2011, 86, 82–90.
[10]  Laokuldilok, T.; Shoemaker, C.F.; Jongkaewwattana, S.; Tulyathan, V. Antioxidants and antioxidant activity of several pigmented rice brans. J. Agric. Food Chem. 2011, 59, 193–199.
[11]  Sharma, O.P.; Bhat, T.K.; Singh, B. Thin-layer chromatography of gallic acid, methyl gallate, pyrogallol, phloroglucinol, catechol, resorcinol, hydroquinone, catechin, epicatechin, cinnamic acid, p-coumaric acid, ferulic acid and tannic acid. J. Chrom. A 1998, 822, 167–171.
[12]  Borges, M.F.M.; Pinto, M.M.M. Separation of the diastereoisomers of ethyl-esters of caffeic, ferulic, and isoferulic acids by thin-layer and high-performance liquid-chromatography. J. Liq. Chrom. 1994, 17, 1125–1139.
[13]  Ellnain-Wojtaszek, M.; Zgorka, G. High-performance liquid chromatography and thin-layer chromatography of phenolic acids from Ginkgo biloba L-leaves collected within vegetative period. J. Liq. Chrom. Rel. Technol. 1999, 22, 1457–1471.
[14]  Choudhary, G.; Chakel, J.; Hancock, W.; Torres-Duarte, A.; McMahon, G.; Wainer, I. Investigation of the potential of capillary electrophoresis with off-line matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for clinical analysis: Examination of a glycoprotein factor associated with cancer cachexia. Anal. Chem. 1999, 71, 855–859.
[15]  Lima, D.L.D.; Duarte, A.C.; Esteves, V.I. Optimization of phenolic compounds analysis by capillary electrophoresis. Talanta 2007, 72, 1404–409.
[16]  Aturki, Z.; Fanali, S.; D'Orazio, G.; Rocco, A.; Rosati, C. Analysis of phenolic compounds in extra virgin olive oil by using reversed-phase capillary electrochromatography. Electrophoresis 2008, 29, 1643–1650.
[17]  Ozyurt, D.; Demirata, B.; Apak, R. Determination of total antioxidant capacity by a new spectrophotometric method based on Ce (IV) reducing capacity measurement. Talanta 2007, 71, 1155–1165.
[18]  Shpigun, L.K.; Zamyatina, N.N.; Shushenachev, Y.V.; Kamilova, P.M. Flow-injection methods for the determination of antioxidant activity based on free-radical processes. J. Anal. Chem. 2012, 67, 801–808.
[19]  Garcia, R.; Rakotozafy, L.; Telef, N.; Potus, J.; Nicolas, J. Oxidation of ferulic acid or arabinose-esterified ferulic acid by wheat germ peroxidase. J. Agric. Food Chem. 2002, 50, 3290–3298.
[20]  Lin, I.J.; Cham, T.M.; Wu, S.M. Simultaneous determination of hesperidin, ferulic acid, cinnamic acid and cinnamaldehyde in chinese tonic wine by high performance liquid chromatography. J. Chin. Chem. 2010, 57, 429–435.
[21]  Wang, J.P.; Li, N.B.; Luo, H.Q. Chemiluminescence determination of ferulic acid by flow-injection analysis using cerium (IV) sensitized by rhodamine 6G. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2008, 1, 204–208.
[22]  Li, J.; Bo, L.L.; Feng, Y.Q.; Hao, C.; Min, C.F.; Ling, W.J.; Xing, W.H. Determination of ferulic acid based on the L-cysteine self-assembled modified gold electrode coupling irreversible biamperometry. Chin. J. Anal. Chem. 2007, 35, 933–937.
[23]  Yua, Y.Y.; Wu, Q.S.; Wang, X.G.; Ding, Y.P. Electrochemical determination of ferulic acid in Chinese traditional medicine Xiao Yao Pills at electrode modified with carbon nanotube. Russ J. Electrochem. 2009, 45, 170–174.
[24]  Luo, L.; Wang, X.; Li, Q.; Ding, Y.; Jia, J.; Deng, D. Voltammetric determination of ferulic acid by didodecyldimethylammonium bromide/nafion composite film-modified carbon paste electrode. Anal. Sci. 2010, 26, 907–911.
[25]  Martinez, A.W.; Phillips, S.T.; Butte, M.J.; Whitesides, G.M. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. Int. Ed. 2007, 46, 1318–1320.
[26]  Martinez, A.W.; Phillips, S.T.; Carrilho, E.; Thomas, S.W.; Sindi, H.; Whitesides, G.M. Simple telemedicine for developing regions: Camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal. Chem. 2008, 80, 3699–3707.
[27]  Martinez, A.W.; Phillips, S.T.; Whitesides, G.M. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc. Natl. Acad. Sci. USA 2008, 105, 19606–19611.
[28]  Dungchai, W.; Chailapakul, O.; Henry, C.S. Electrochemical detection for paper-based microfluidics. Anal. Chem. 2009, 81, 5821–5826.
[29]  Apilux, A.; Dungchai, W.; Siangproh, W.; Praphairaksit, N.; Henry, C.S.; Chailapakul, O. Lab-on-paper with dual electrochemical/colorimetric detection for simultaneous determination of gold and iron. Anal. Chem. 2010, 82, 1727–1732.
[30]  Rattanarat, P.; Dungchai, W.; Siangproh, W.; Chailapakul, O.; Henry, C.S. Sodium dodecyl sulfate-modified electrochemical paper-based analytical device for determination of dopamine levels in biological samples. Anal. Chim. Acta 2012, 744, 1–7.
[31]  Lie, H.; Crooks, R.M. Paper-based electrochemical sensing platform with integral battery and electrochromic read-out. Anal. Chem. 2012, 84, 2528–2532.
[32]  Lankelma, J.; Nie, Z.; Carrilho, E.; Whitesides, G.M. Paper-based analytical device for electrochemical flow-injection analysis of glucose in urine. Anal. Chem. 2012, 84, 4147–4152.
[33]  Weaver, A.A.; Reiser, H.; Barstis, T.; Benvenuti, M.; Ghosh, D.; Hunckler, M.; Joy, B.; Koening, L.; Raddell, K.; Lieberman, M. Paper analytical devices for fast field sceening of beta lactam antibiotics and antituberculosis pharmaceuticals. Anal. Chem. 2013, 85, 6453–6460.
[34]  Lewis, G.G.; DiTucci, M.J.; Phillips, S.T. Quantifying analytes in paper-Based microfluidic devices without using external electronic reader. Angew. Chem. 2012, 51, 12707–12710.
[35]  Hossain, S.M.Z.; Luckham, R.E.; McFadden, M.J.; Brennan, J.D. Reagentless bidirectional lateral flow bioactive paper sensors for detection of pesticides in beverage and food samples. Anal. Chem. 2009, 81, 9055–9064.
[36]  Derda, R.; Laromaine, A.; Mammoto, A.; Tang, S.K.Y.; Mammoto, T.; Ingber, D.E.; Whitesides, G.M. Paper-supported 3D cell culture for tissue-based bioassays. Proc. Natl. Acad. Sci. USA 2009, 106, 18457–18462.
[37]  Fu, E.; Liang, T.; Mihalic, P.S.; Houghtaling, J.; Ramachandran, S.; Yager, P. Two-dimentional paper network format that enables simple multistep assays for use in low-resource settings in the context of malaria antigen detection. Anal. Chem. 2012, 84, 4574–4579.
[38]  Vella, S.J.; Beattie, P.; Cademartiri, R.; Laromaine, A.; Martinez, A.W.; Phillips, S.T.; Mirica, K.A.; Whitesides, G.M. Measuring markers of liver function using a micropatterned paper device designed for blood from a fingerstick. Anal. Chem. 2012, 84, 2883–2891.
[39]  Songjaroen, T.; Dungchai, W.; Chailapakul, O.; Henry, C.S.; Laiwattanapaisal, W. Blood separation on microfluidic paper-based analytical devices. Lab Chip 2012, 12, 3392–3398.
[40]  Govindarajan, A.V.; Ramachandran, S.; Vigil, G.D.; Yager, P.; Bohringer, K.F. A low cost point-of-care viscous sample preparation device for molecular diagnosis in the developing world; An example of microfluidic origami. Lab Chip 2012, 12, 174–181.
[41]  Apilux, A.; Siangproh, W.; Praphairaksit, N.; Chailapakul, O. Simple and rapid colorimetric detection of Hg (II) by a paper-based device using silver nanoplates. Talanta 2012, 97, 388–394.
[42]  Dungchai, W.; Chailapakul, O.; Henry, C.S. A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst 2011, 136, 77–82.
[43]  Huang, D.J.; Ou, B.X.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856.
[44]  Shukla, S.; Mehta, A.; John, J.; Singh, S.; Mehta, P.; Vyas, S.P. Antioxidant activity and total phenolic content of ethanolic extract of Caesalpinia bonducella seeds. Food Chem. Toxicol. 2009, 47, 1848–1851.
[45]  George, S.; Brat, P.; Alter, P.; Amiot, M.J. Rapid determination of polyphenols and vitamin C in plant-derived products. J. Agric. Food Chem. 2005, 53, 1370–1373.
[46]  Sheng, Y. X.; Li, L.; Wang, Q.; Guo, H.Z.; Guo, D.A. Simultaneous determination of gallic acid, albiflorin, paeoniflorin, ferulic acid and benzoic acid in Si-Wu decoction by high-performance liquid chromatography DAD method. J. Pharmaceut. Biomed. Anal. 2005, 37, 805–810.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133