全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Kalman/Map Filtering-Aided Fast Normalized Cross Correlation-Based Wi-Fi Fingerprinting Location Sensing

DOI: 10.3390/s131115513

Keywords: indoor location sensing, Wi-Fi fingerprinting, fast normalized cross correlation, map matching, Kalman/map filtering

Full-Text   Cite this paper   Add to My Lib

Abstract:

A Kalman/map filtering (KMF)-aided fast normalized cross correlation (FNCC)-based Wi-Fi fingerprinting location sensing system is proposed in this paper. Compared with conventional neighbor selection algorithms that calculate localization results with received signal strength (RSS) mean samples, the proposed FNCC algorithm makes use of all the on-line RSS samples and reference point RSS variations to achieve higher fingerprinting accuracy. The FNCC computes efficiently while maintaining the same accuracy as the basic normalized cross correlation. Additionally, a KMF is also proposed to process fingerprinting localization results. It employs a new map matching algorithm to nonlinearize the linear location prediction process of Kalman filtering (KF) that takes advantage of spatial proximities of consecutive localization results. With a calibration model integrated into an indoor map, the map matching algorithm corrects unreasonable prediction locations of the KF according to the building interior structure. Thus, more accurate prediction locations are obtained. Using these locations, the KMF considerably improves fingerprinting algorithm performance. Experimental results demonstrate that the FNCC algorithm with reduced computational complexity outperforms other neighbor selection algorithms and the KMF effectively improves location sensing accuracy by using indoor map information and spatial proximities of consecutive localization results.

References

[1]  Becker, C.; Dürr, F. On location models for ubiquitous computing. Pers. Ubiquitous Comput. 2005, 9, 20–31.
[2]  Hightower, J.; Borriello, G. Location systems for ubiquitous computing. Computer 2001, 34, 57–66.
[3]  Georgy, J.; Noureldin, A. Tightly coupled low cost 3D RISS/GPS integration using a mixture particle filter for vehicular navigation. Sensors 2011, 11, 4244–4276.
[4]  Prasithsangaree, P.; Krishnamurthy, P.; Chrysanthis, P.K. On Indoor Position Location with Wireless Lans. Proceedings of 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Lisbon, Portugal, 15–18 September 2002; pp. 720–724.
[5]  Gu, Y.Y.; Lo, A.; Niemegeers, I. A survey of indoor positioning systems for wireless personal networks. IEEE Commun. Surv. Tutor. 2009, 11, 13–32.
[6]  Want, R.; Hopper, A.; Falcao, V.; Gibbons, J. The active badge location system. ACM Trans. Inform. Syst. 1992, 10, 91–102.
[7]  Ni, L.M.; Liu, Y.; Lau, Y.C.; Patil, A.P. LANDMARC: Indoor location sensing using active RFID. Wirel. Netw. 2004, 10, 701–710.
[8]  Maranò, S.; Gifford, W.M.; Wymeersch, H.; Win, M.Z. NLOS identification and mitigation for localization based on UWB experimental data. IEEE J. Sel. Areas Commun. 2010, 28, 1026–1035.
[9]  Liu, H.; Darabi, H.; Banerjee, P.; Liu, J. Survey of wireless indoor positioning techniques and systems. IEEE Trans. Syst. Man. Cybern. C. 2007, 37, 1067–1080.
[10]  Zhou, M.; Xu, Y.B.; Ma, L.; Tian, S. On the statistical errors of RADAR location sensor networks with built-in Wi-Fi Gaussian linear fingerprints. Sensors 2012, 12, 3605–3626.
[11]  Bahl, P.; Padmanabhan, V.N. RADAR: An in-Building RF-Based User Location and Tracking System. Proceedings of 19th IEEE Computer and Communications Societies Conference, Tel Aviv, Israel, 26–30 March 2000; pp. 775–784.
[12]  Li, B.H.; Wang, Y.; Lee, H.K.; Dempster, A.G.; Rizos, C. Method for yielding a database of location fingerprints in WLAN. IEEE Proc. Commun. 2005, 152, 580–586.
[13]  Baala, O.; Caminada, A. Location Precision in Indoor Positioning System. Proceedings of 2006 Innovations in Information Technology, Dubai, UAE, 19–21 November 2006; pp. 1–5.
[14]  Xu, Y.B.; Zhou, M.; Meng, W.X.; Ma, L. Optimal KNN Positioning Algorithm via Theoretical Accuracy Criterion in WLAN Indoor Environment. Proceedings of 2010 IEEE Global Telecommunications Conference, Miami, FL, USA, 6–10 December 2010; pp. 1–5.
[15]  Zhou, M.; Xu, Y.B.; Tang, L. Multilayer ANN indoor location system with area division in WLAN environment. J. Syst. Eng. Electron. 2010, 21, 914–926.
[16]  Meng, W.X.; Wang, J.W.; Peng, L.; Xu, Y.B. ANFIS-Based Wireless LAN Indoor Positioning Algorithm. Proceedings of 5th International Conference on Wireless Communications, Networking and Mobile Computing, Beijing, China, 24–26 September 2009; pp. 1–4.
[17]  Brunato, M.; Battiti, R. Statistical learning theory for location fingerprinting in wireless LANs. Comput. Netw. 2005, 47, 825–845.
[18]  Xiao, J.; Wu, K.S.; Yi, Y.W.; Ni, L.M. FIFS: Fine-Grained Indoor Fingerprinting System. Proceedings of 2012 21st International Conference on Computer Communications and Networks, Munich, Germany, 30 July–2 August 2012; pp. 1–7.
[19]  Liu, X.C.; Zhang, S.; Zhao, Q.Y.; Lin, X.K. A Real-Time Algorithm for Fingerprint Localization Based on Clustering and Spatial Diversity. Proceedings of 2010 International Congress on Ultra Modern Telecommunications and Control Systems and Workshops, Moscow, Russia, 18–20 October 2010; pp. 74–81.
[20]  Tsai, D.M.; Lin, C.T. Fast normalized cross correlation for defect detection. Pattern Recognit. Lett. 2003, 24, 2625–2631.
[21]  Avants, B.B.; Epstein, C.L.; Grossman, M.; Gee, J.C. Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 2008, 12, 26–41.
[22]  Lewis, J.P. Fast template matching. Vis. Interface 1995, 95, 120–123.
[23]  Yoo, J.C.; Han, T.H. Fast normalized cross-correlation. Circuits. Syst. Signal Process. 2009, 28, 819–843.
[24]  Wei, S.D.; Lai, S.H. Fast template matching based on normalized cross correlation with adaptive multilevel winner update. IEEE Trans. Image Process. 2008, 17, 2227–2235.
[25]  Outemzabet, S.; Nerguizian, C. Accuracy Enhancement of an Indoor ANN-Based Fingerprinting Location System Using Kalman Filtering. Proceedings of IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, Poznan, Poland, 15–18 September 2008; pp. 1–5.
[26]  Ali-loytty, S.; Perala, T.; Honkavirta, V.; Piche, R. Fingerprint Kalman Filter in Indoor Positioning Applications. Proceedings of 18th IEEE International Conference on Control Applications Part of 2009 IEEE Multi-Conference on Systems and Control, Saint Petersburg, Russia, 8–10 July 2009; pp. 1678–1683.
[27]  Chiou, Y.S.; Wang, C.L.; Yeh, S.C. An Adaptive Location Estimator Based on Kalman Filtering for Dynamic Indoor Environments. Proceedings of 2006 Vehicular Technology Conference Fall, Montreal, QC, Canada, 25–28 September 2006; pp. 1–5.
[28]  Outemzabet, S.; Nerguizian, C. Accuracy Enhancement of an Indoor ANN-Based Fingerprinting Location System Using Particle Filtering and a Low-Cost Sensor. Proceedings of 2008 IEEE 67th Vehicular Technology Conference, Marina Bay, Singapore, 11–14 May 2008; pp. 2750–2754.
[29]  Wang, H.; Szabo, A.; Bamberger, J.; Brunn, D.; Hanebeck, U.D. Performance Comparison of Nonlinear Filters for Indoor WLAN Positioning. Proceedings of 11th International Conference on Information Fusion, Cologne, Germany, 30 June–3 July 2008; pp. 1–7.
[30]  Leppakoski, H.; Collin, J.; Takala, J. Pedestrian navigation based on inertial sensors, indoor map, and WLAN signals. J. Signal. Process. Syst. 2013, 71, 287–296.
[31]  Beauregard, S.; Widyawan, W.; Klepal, M. Indoor PDR Performance Enhancement Using Minimal Map Information and Particle Filters. Proceedings of 2008 IEEE /ION Position, Location and Navigation Symposium, Monterey, CA, USA, 5–8 May 2008; pp. 141–147.
[32]  Ascher, C.; Kessler, C.; Weis, R.; Trommer, G.F. Multi-Floor Map Matching in Indoor Environments for Mobile Platforms. Proceedings of 2012 International Conference on Indoor Positioning and Indoor Navigation, Sydney, Australia, 13–15 November 2012; pp. 1–5.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133