全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

TiO2 Nanotubes: Recent Advances in Synthesis and Gas Sensing Properties

DOI: 10.3390/s131114813

Keywords: titanium dioxide, nanotubes, electrochemical anodization, gas sensors

Full-Text   Cite this paper   Add to My Lib

Abstract:

Synthesis—particularly by electrochemical anodization-, growth mechanism and chemical sensing properties of pure, doped and mixed titania tubular arrays are reviewed. The first part deals on how anodization parameters affect the size, shape and morphology of titania nanotubes. In the second part fabrication of sensing devices based on titania nanotubes is presented, together with their most notable gas sensing performances. Doping largely improves conductivity and enhances gas sensing performances of TiO 2 nanotubes

References

[1]  Lee, J.; Orilall, M.C.; Warren, S.C.; Kamperman, M.; Disalvo, F.J.; Wiesner, U. Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores. Nat. Mater. 2008, 7, 222–228.
[2]  Bolink, H.J.; Coronado, E.; Orozco, J.; Sessolo, M. Efficient polymer light-emitting diode using air-stable metal oxides as electrodes. Adv. Mater. 2009, 21, 79–82.
[3]  Vallejos, S.; Khatko, V.; Calderer, J.; Gracia, I.; Cane, C.; Llobet, E.; Correig, X. Micro-machined WO3-based sensors selective to oxidizing gases. Sens. Actuators B Chem. 2008, 132, 209–215.
[4]  Alessandri, I.; Comini, E.; Bontempi, E.; Faglia, G.; Depero, L.E.; Sberveglieri, G. Cr-inserted TiO2 thin films for chemical gas sensors. Sens. Actuators B Chem. 2007, 128, 312–319.
[5]  Ponce, M.A.; Parra, R.; Savu, R.; Joanni, E.; Bueno, P.R.; Cilense, M.; Varela, J.A.; Castro, M.S. Impedance spectroscopy analysis of TiO2 thin film gas sensors obtained from water-based anatase colloids. Sens. Actuators B Chem. 2009, 139, 447–452.
[6]  Tian, W.C.; Ho, Y.H.; Chen, C.H.; Kuo, C.Y. Sensing performance of precisely ordered TiO2 nanowire gas sensors fabricated by electron-beam lithography. Sensors 2013, 13, 865–874.
[7]  Kim, I.D.; Rothschild, A.; Yang, D.J.; Tuller, H.L. Macroporous TiO2 thin film gas sensors obtained using colloidal templates. Sens. Actuators B Chem. 2008, 130, 9–13.
[8]  Paulose, M.; Varghese, O.K.; Mor, G.K.; Grimes, C.A.; Ong, K.G. Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes. Nanotechnology 2006, 17, 398–402.
[9]  Ha, T.J.; Hong, M.H.; Park, C.S.; Park, H.H. Gas sensing properties of ordered mesoporous TiO2 film enhanced by thermal shock induced cracking. Sens. Actuators B Chem. 2013, 181, 874–879.
[10]  Zhang, X.X.; Zhang, J.B.; Jia, Y.C.; Xiao, P.; Tang, J. TiO2 nanotube array sensor for detecting the SF6 decomposition product SO2. Sensors 2012, 12, 3302–3313.
[11]  Varghese, O.K.; Gong, D.W.; Paulose, M.; Ong, K.G.; Grimes, C.A. Hydrogen sensing using titania nanotubes. Sens. Actuators B Chem. 2003, 93, 338–344.
[12]  Sennik, E.; Colak, Z.; Kilinc, N.; Ozturk, Z.Z. Synthesis of highly-ordered TiO2 nanotubes for a hydrogen sensor. Int. J. Hydr. Energy 2010, 35, 4420–4427.
[13]  Charanpahari, A.; Umare, S.S.; Sasikala, R. Effect of Ce, N and S multi-doping on the photocatalytic activity of TiO2. Appl. Surf. Sci. 2013, 282, 408–414.
[14]  Horie, Y.; Watanabe, T.; Deguchi, M.; Asakura, D.; Nomiyama, T. Enhancement of carrier mobility by electrospun nanofibers of Nb-doped TiO2 in dye sensitized solar cells. Electrochim. Acta. 2013, 105, 394–402.
[15]  Ok, K.C.; Park, Y.; Chung, K.B.; Park, J.S. The effect of Nb doping on the performance and stability of TiOx devices. J. Phys. D Appl. Phys. 2013, 46, 295102.
[16]  Song, K.; Han, X.; Shao, G. Electronic properties of rutile TiO2 doped with 4d transition metals: First-principles study. J. Alloys Comp. 2013, 551, 118–124.
[17]  Neville, E.M.; MacElroy, J.M.D.; Thampi, K.R.; Sullivan, J.A. Visible light active C-doped titanate nanotubes prepared via alkaline hydrothermal treatment of C-doped nanoparticulate TiO2: Photo-electrochemical and photocatalytic properties. J. Photochem. Photobiol. A Chem. 2013, 267, 17–24.
[18]  Guo, S.; Han, S.; Haifeng, M.; Zeng, C.; Sun, Y.; Chi, B.; Pu, J.; Li, J. Synthesis of phosphorus-doped titania with mesoporous structure and excellent photocatalytic activity. Mater. Res. Bull. 2013, 48, 3032–3036.
[19]  Gao, Y.; Thevuthasan, S.; McCready, D.E.; Engelhard, M. MOCVD growth and structure of Nb- and V-doped TiO2 films on sapphire. J. Cryst. Grow. 2000, 212, 178–190.
[20]  Santangelo, S.; Faggio, G.; Messina, G.; Fazio, E.; Neri, F.; Neri, G. On the hydrogen sensing mechanism of Pt/TiO2/CNTs based devices. Sens. Actuators B: Chem. 2013, 178, 473–484.
[21]  Moon, J.; Park, J.A.; Lee, S.J.; Zyung, T.; Kim, I.D. Pd-doped TiO2 nanofiber networks for gas sensor applications. Sens. Actuators B: Chem. 2010, 149, 301–305.
[22]  Carotta, M.C.; Ferroni, M.; Gnani, D.; Guidi, V.; Merli, M.; Martinelli, G.; Casale, M.C.; Notaro, M. Nanostructured pure and Nb-doped TiO2 as thick film gas sensors for environmental monitoring. Sens. Actuators B Chem. 1999, 58, 310–317.
[23]  Benkara, S.; Zerkout, S.; Ghamri, H. Synthesis of SN doped ZnO/TiO2 nanocomposite film and their application to H2 gas sensing properties. Mater. Sci. Semicond. Proc. 2013, 16, 1271–1279.
[24]  Han, Z.; Wang, J.; Liao, L.; Pan, H.; Shen, S.; Chen, J. Phosphorus doped TiO2 as oxygen sensor with low operating temperature and sensing mechanism. Appl. Surf. Sci. 2013, 273, 349–356.
[25]  Ruggieri, F.; Di Camillo, D.; Lozzi, L.; Santucci, S.; De Marcellis, A.; Ferri, G.; Giancaterini, L.; Cantalini, C. Preparation of nitrogen doped TiO2 nanofibers by near field electrospinning (NFES) technique for NO2 sensing. Sens. Actuators B Chem. 2013, 179, 107–113.
[26]  Patil, L.A.; Suryawanshi, D.N.; Pathan, I.G.; Patil, D.M. Nickel doped spray pyrolyzed nanostructured TiO2 thin films for LPG gas sensing. Sens. Actuators B Chem. 2013, 176, 514–521.
[27]  Zeng, W.; Liu, T.; Wang, Z. Impact of Nb doping on gas-sensing performance of TiO2thick-film sensors. Sens. Actuators B Chem. 2012, 166–167, 141–149.
[28]  Sato, Y.; Akizuki, H.; Kamiyama, T.; Shigesato, Y. Transparent conductive Nb-doped TiO2 films deposited by direct-current magnetron sputtering using a TiO2-x target. Thin Solid Films 2008, 516, 5758–5762.
[29]  K?rner, W.; Els?sser, C. Density functional theory study of dopants in polycrystalline TiO2. Phys. Rev. B. 2011, 83, 205315.
[30]  Arbiol, J.; Cerda, J.; Dezanneau, G.; Cirera, A.; Peiro, F.; Cornet, A.; Morante, J.R. Effects of Nb doping on the TiO2 anatase-to-rutile phase transition. J. Appl. Phys. 2002, 92, 853–861.
[31]  Tang, H.; Prasad, K.; Sanjines, R.; Levy, F. TiO2 anatase thin-films as gas sensors. Sens. Actuators B Chem. 1995, 26, 71–75.
[32]  Sclafani, A.; Herrmann, J.M. Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions. J. Phys. Chem. 1996, 100, 13655–13661.
[33]  Li, S.-C.; Diebold, U. Reactivity of TiO2 rutile and anatase surfaces toward nitroaromatics. J. Am. Chem. Soc. 2009, 132, 64–66.
[34]  Su, R.; Bechstein, R.; S?, L.; Vang, R.T.; Sillassen, M.; Esbj?rnsson, B.; Palmqvist, A.; Besenbacher, F. How the anatase-to-rutile ratio influences the photoreactivity of TiO2. J. Phys. Chem. C. 2011, 115, 24287–24292.
[35]  Hoyer, P. Formation of a titanium dioxide nanotube array. Langmuir 1996, 12, 1411–1413.
[36]  Gong, D.; Grimes, C.A.; Varghese, O.K.; Hu, W.C.; Singh, R.S.; Chen, Z.; Dickey, E.C. Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 2001, 16, 3331–3334.
[37]  Beranek, R.; Hildebrand, H.; Schmuki, P. Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes. Electrochem. Solid-State Lett. 2003, 6, B12–B14.
[38]  Lai, Y.; Zhuang, H.; Sun, L.; Chen, Z.; Lin, C. Self-organized TiO2 nanotubes in mixed organic-inorganic electrolytes and their photoelectrochemical performance. Electrochim. Acta. 2009, 54, 6536–6542.
[39]  Galstyan, V.; Vomiero, A.; Comini, E.; Faglia, G.; Sberveglieri, G. TiO2 nanotubular and nanoporous arrays by electrochemical anodization on different substrates. Rsc Adv. 2011, 1, 1038–1044.
[40]  Foong, T.R.B.; Shen, Y.D.; Hu, X.; Sellinger, A. Template-directed liquid ald growth of TiO2 nanotube arrays: Properties and potential in photovoltaic devices. Adv. Funct. Mater. 2010, 20, 1390–1396.
[41]  Huang, Y.J.; Pandraud, G.; Sarro, P.M. The atomic layer deposition array defined by etch-back technique: A new method to fabricate TiO2 nanopillars, nanotubes and nanochannel arrays. Nanotechnology 2012, 23, 485306.
[42]  Chang, Y-H.; Liu, C.-M.; Chen, C.; Cheng, H.-E. The heterojunction effects of TiO2 nanotubes fabricated by atomic layer deposition on photocarrier transportation direction. Nanos. Res. Lett. 2012, 7, 1–7.
[43]  Suzuki, Y.; Yoshikawa, S. Synthesis and thermal analyses of TiO2-derived nanotubes prepared by the hydrothermal method. J. Mater. Res. 2004, 19, 982–985.
[44]  Choi, M.G.; Lee, Y.G.; Song, S.W.; Kim, K.M. Lithium-ion battery anode properties of TiO2 nanotubes prepared by the hydrothermal synthesis of mixed (anatase and rutile) particles. Electrochim. Acta. 2010, 55, 5975–5983.
[45]  Zhao, P.-J.; Wu, R.; Hou, J.; Chang, A.-m.; Guan, F.; Zhang, B. One-step hydrothermal synthesis and visible-light photocatalytic activity of ultrafine Cu-nanodot-modified TiO2 nanotubes. Acta Phys.-Chim. Sin. 2012, 28, 1971–1977.
[46]  Galstyan, V.; Comini, E.; Vomiero, A.; Ponzoni, A.; Concina, I.; Brisotto, M.; Bontempi, E.; Faglia, G.; Sberveglieri, G. Fabrication of pure and Nb-TiO2 nanotubes and their functional properties. J. Alloys Comp. 2012, 536, S488–S490.
[47]  Galstyan, V.; Comini, E.; Faglia, G.; Vomiero, A.; Borgese, L.; Bontempi, E.; Sberveglieri, G. Fabrication and investigation of gas sensing properties of Nb-doped TiO2nanotubular arrays. Nanotechnology 2012, 23, doi:10.1088/0957-4484/23/23/235706.
[48]  Zwilling, V.; Darque-Ceretti, E. Characterization of porous and compact oxide films on titanium and Ti-6A1-4V. Caracterisation d'oxydes anodiques poreux et compacts de titane et de Ta6V 1997, 22, 481–493.
[49]  Zwilling, V.; Darque-Ceretti, E.; Boutry-Forveille, A.; David, D.; Perrin, M.Y.; Aucouturier, M. Structure and physicochemistry of anodic oxide films on titanium and Ta6V alloy. Surf. Interf. Anal. 1999, 27, 629–637.
[50]  Sreekantan, S.; Saharudin, K.A.; Lockman, Z.; Tzu, T.W. Fast-rate formation of TiO2 nanotube arrays in an organic bath and their applications in photocatalysis. Nanotechnology 2010, 21, 365603.
[51]  Wang, M.; Liu, Y.; Yang, H. A unified thermodynamic theory for the formation of anodized metal oxide structures. Electrochim. Acta. 2012, 62, 424–432.
[52]  Macák, J.M.; Tsuchiya, H.; Schmuki, P. High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew. Chem. Int. Ed. 2005, 44, 2100–2102.
[53]  Varghese, O.K.; Paulose, M.; Grimes, C.A. Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nat. Nanotechnol 2009, 4, 592–597.
[54]  Wang, J.; Lin, Z. Anodic formation of ordered TiO2 nanotube arrays: Effects of electrolyte temperature and anodization potential. J. Phys. Chem. C. 2009, 113, 4026–4030.
[55]  Zhang, L.; Han, Y. Effect of nanostructured titanium on anodization growth of self-organized TiO2 nanotubes. Nanotechnology 2010, 21, 055602.
[56]  Regonini, D.; Jaroenworaluck, A.; Stevens, R.; Bowen, C.R. Effect of heat treatment on the properties and structure of TiO2 nanotubes: Phase composition and chemical composition. Surf. Interf. Anal. 2010, 42, 139–144.
[57]  Yamazoe, N.; Shimanoe, K. Roles of shape and size of component crystals in semiconductor gas sensors. J. Electrochem. Soc. 2008, 155, J85–J92.
[58]  Yamazoe, N.; Shimanoe, K. Roles of shape and size of component crystals in semiconductor gas sensors. J. Electrochem. Soc. 2008, 155, J93–J98.
[59]  Barsan, N.; Weimar, U. Conduction model of metal oxide gas sensors. J. Electroceram 2001, 7, 143–167.
[60]  Ghicov, A.; Schmidt, B.; Kunze, J.; Schmuki, P. Photoresponse in the visible range from Cr doped TiO2 nanotubes. Chem. Phys. Lett. 2007, 433, 323–326.
[61]  Meng, X.Q.; Yao, J.Y.; Liu, F.L.; He, H.C.; Zhou, M.; Xiao, P.; Zhang, Y.H. Preparation of SnO2@C-doping TiO2 nanotube arrays and its electrochemical and photoelectrochemical properties. J. Alloys Comp. 2013, 552, 392–397.
[62]  Isimjan, T.T.; El Ruby, A.; Rohani, S.; Ray, A.K. The fabrication of highly ordered and visible-light-responsive Fe-C-N-codoped TiO2 nanotubes. Nanotechnology 2010, 21, 055706.
[63]  Yuan, B.; Wang, Y.; Bian, H.; Shen, T.; Wu, Y.; Chen, Z. Nitrogen doped TiO2 nanotube arrays with high photoelectrochemical activity for photocatalytic applications. Appl. Surf. Sci. 2013, 280, 523–529.
[64]  Li, D.; Zhang, Y.; Zhang, Y.; Zhou, X.; Guo, S. Fabrication of bidirectionally doped β-Bi2O3/TiO2-NTs with enhanced photocatalysis under visible light irradiation. J. Hazard. Mater. 2013, 258–259, 42–49.
[65]  Zhang, X.; Tang, Y.; Li, Y.; Wang, Y.; Liu, X.; Liu, C.; Luo, S. Reduced graphene oxide and PbS nanoparticles co-modified TiO2 nanotube arrays as a recyclable and stable photocatalyst for efficient degradation of pentachlorophenol. Appl. Catal. A General 2013, 457, 78–84.
[66]  Liu, C.; Teng, Y.; Liu, R.; Luo, S.; Tang, Y.; Chen, L.; Cai, Q. Fabrication of graphene films on TiO2 nanotube arrays for photocatalytic application. Carbon 2011, 49, 5312–5320.
[67]  Ding, D.Y.; Ning, C.Q.; Huang, L.; Jin, F.C.; Hao, Y.Q.; Bai, S.; Li, Y.; Li, M.; Mao, D.L. Anodic fabrication and bioactivity of Nb-doped TiO2 nanotubes. Nanotechnology 2009, 20, 305103.
[68]  Hao, Y.Q.; Li, S.J.; Hao, Y.L.; Zhao, Y.K.; Ai, H.J. Effect of nanotube diameters on bioactivity of a multifunctional titanium alloy. Appl. Surf. Sci. 2013, 268, 44–51.
[69]  Moon, S.H.; Lee, S.J.; Park, I.S.; Lee, M.H.; Soh, Y.J.; Bae, T.S.; Kim, H.S. Bioactivity of Ti-6Al-4V alloy implants treated with ibandronate after the formation of the nanotube TiO2 layer. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012, 100B, 2053–2059.
[70]  Roguska, A.; Belcarz, A.; Piersiak, T.; Pisarek, M.; Ginalska, G.; Lewandowska, M. Evaluation of the antibacterial activity of Ag-loaded TiO2nanotubes. Eur. J. Inorg. Chem. 2012, 5199–5206.
[71]  Hang, R.; Huang, X.; Tian, L.; He, Z.; Tang, B. Preparation, characterization, corrosion behavior and bioactivity of Ni2O3-doped TiO2 nanotubes on NiTi alloy. Electrochim. Acta. 2012, 70, 382–393.
[72]  Kwon, Y.; Kim, H.; Lee, S.; Chin, I.J.; Seong, T.Y.; Lee, W.I.; Lee, C. Enhanced ethanol sensing properties of TiO2 nanotube sensors. Sens. Actuators B Chem. 2012, 173, 441–446.
[73]  Chen, K.S.; Xie, K.; Feng, X.R.; Wang, S.F.; Hu, R.; Gu, H.S.; Li, Y. An excellent room-temperature hydrogen sensor based on titania nanotube-arrays. Int. J. Hydr. Energy 2012, 37, 13602–13609.
[74]  Liu, R.; Yang, W.-D.; Qiang, L.-S.; Liu, H.-Y. Conveniently fabricated heterojunction ZnO/TiO2 electrodes using TiO2 nanotube arrays for dye-sensitized solar cells. J. Power Sour. 2012, 220, 153–159.
[75]  Das, C.; Paramasivam, I.; Liu, N.; Schmuki, P. Photoelectrochemical and photocatalytic activity of tungsten doped TiO2 nanotube layers in the near visible region. Electrochim. Acta. 2011, 56, 10557–10561.
[76]  Lai, C.W.; Sreekantan, S. Incorporation of WO3 species into TiO2 nanotubes via wet impregnation and their water-splitting performance. Electrochim. Acta 2013, 87, 294–302.
[77]  Choi, Y.J.; Seeley, Z.; Bandyopadhyay, A.; Bose, S.; Akbar, S.A. Aluminum-doped TiO2 nano-powders for gas sensors. Sens. Actuators B Chem. 2007, 124, 111–117.
[78]  Zeng, W.; Liu, T.M.; Wang, Z.C. Impact of Nb doping on gas-sensing performance of TiO2 thick-film sensors. Sens. Actuators B Chem. 2012, 166, 141–149.
[79]  Singh, S.; Kaur, H.; Singh, V.N.; Jain, K.; Senguttuvan, T.D. Highly sensitive and pulse-like response toward ethanol of Nb doped TiO2 nanorods based gas sensors. Sens. Actuators B Chem 2012, 171, 899–906.
[80]  Tsuda, N.; Nasu, K.; Fujimori, A.; Siratori, K. Electronic Conduction in Oxides, 2 ed.; Springer: Berlin, Germany, 2000; p. 369.
[81]  Samson, S.; Fonstad, C.G. Defect structure and electronic donor levels in stannic oxide crystals. J. Appl. Phys. 1973, 44, 4618–4621.
[82]  Madou, M.J.; Morrison, S.R. Chemical Sensing with Solid State Devices; Academic Press: Boston, MA, USA, 1989.
[83]  Kronik, L.; Shapira, Y. Surface photovoltage phenomena: Theory, experiment, and applications. Surf. Sci. Rep. 1999, 37, 1–206.
[84]  Morrison, S.R. The Chemical Physics of Surfaces; Plenum Press: New York, NY, USA, 1977.
[85]  D'Amico, A.; Di Natale, C. A contribution on some basic definitions of sensors properties. IEEE Sens. J. 2001, 1, 183–190.
[86]  Grimes, C.A.; Ong, K.G.; Varghese, O.K.; Yang, X.P.; Mor, G.; Paulose, M.; Dickey, E.C.; Ruan, C.M.; Pishko, M.V.; Kendig, J.W.; et al. A sentinel sensor network for hydrogen sensing. Sensors 2003, 3, 69–82.
[87]  Kilinc, N.; Sennik, E.; Ozturk, Z.Z. Fabrication of TiO2 nanotubes by anodization of Ti thin films for VOC sensing. Thin Solid Films 2011, 520, 953–958.
[88]  Comini, E.; Faglia, G.; Sberveglieri, G. Electrical-Based Gas Sensing. In Solid State Gas Sensing; Springer: New York, NY, USA, 2009.
[89]  Varghese, O.K.; Gong, D.W.; Paulose, M.; Ong, K.G.; Dickey, E.C.; Grimes, C.A. Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Adv. Mater. 2003, 15, 624–627.
[90]  Kaneco, S.; Chen, Y.; Westerhoff, P.; Crittenden, J.C. Fabrication of uniform size titanium oxide nanotubes: Impact of current density and solution conditions. Scripta Mater. 2007, 56, 373–376.
[91]  Korotchenkov, G.S. Chemical Sensors: Comprehensive Sensors Technologies; Momentum Press: New York, NY, USA, 2011.
[92]  Asl, S.K.; Alavi, B.; Ahmadi, S. The effect of highly ordered titania nanotube structures on hydrogen gas detection. Surf. Interf. Anal. 2012, 44, 1051–1053.
[93]  Lu, H.F.; Li, F.; Liu, G.; Chen, Z.G.; Wang, D.W.; Fang, H.T.; Lu, G.Q.; Jiang, Z.H.; Cheng, H.M. Amorphous TiO2 nanotube arrays for low-temperature oxygen sensors. Nanotechnology 2008, 19, 405504.
[94]  Gonullu, Y.; Rodriguez, G.C.M.; Saruhan, B.; Urgen, M. Improvement of gas sensing performance of TiO2 towards NO2 by nano-tubular structuring. Sens. Actuators B Chem. 2012, 169, 151–160.
[95]  Lee, J.; Kim, D.H.; Hong, S.H.; Jho, J.Y. A hydrogen gas sensor employing vertically aligned TiO2 nanotube arrays prepared by template-assisted method. Sens. Actuators B Chem. 2011, 160, 1494–1498.
[96]  Perillo, P.M.; Rodriguez, D.F. The gas sensing properties at room temperature of TiO2 nanotubes by anodization. Sens. Actuators B Chem. 2012, 171, 639–643.
[97]  Liang, F.X.; Luo, L.B.; Tsang, C.K.; Zheng, L.X.; Cheng, H.; Li, Y.Y. TiO2 nanotube-based field effect transistors and their application as humidity sensors. Mater. Res. Bull. 2012, 47, 54–58.
[98]  Liu, H.G.; Ding, D.Y.; Ning, C.Q.; Li, Z.H. Wide-range hydrogen sensing with Nb-doped TiO2 nanotubes. Nanotechnology 2012, 23, 015502.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133